scholarly journals Interaction between theta-phase and spike-timing dependent plasticity simulates theta induced memory effects

2021 ◽  
Author(s):  
Danying Wang ◽  
George Michael Parish ◽  
Kimron L Shapiro ◽  
Simon Hanslmayr

Rodent studies suggest that spike timing relative to hippocampal theta activity determines whether potentiation or depression of synapses arise. Such changes also depend on spike timing between pre- and post-synaptic neurons, known as spike-timing-dependent plasticity (STDP). STDP, together with theta-phase-dependent learning, has inspired several computational models of learning and memory. However, evidence to elucidate how these mechanisms directly link to human episodic memory is lacking. In a computational model, we modulate long-term potentiation (LTP) and long-term depression (LTD) of STDP, by opposing phases of a simulated theta rhythm. We fit parameters to a hippocampal cell culture study in which LTP and LTD were observed to occur in opposing phases of a theta rhythm. Further, we modulated two inputs by cosine waves with synchronous and asynchronous phase offsets and replicate key findings in human episodic memory. Learning advantage was found for the synchronous condition, as compared to the asynchronous conditions, and was specific to theta modulated inputs. Importantly, simulations with and without each mechanism suggest that both STDP and theta-phase-dependent plasticity are necessary to replicate the findings. Together, the results indicate a role for circuit-level mechanisms, which bridges the gap between slice preparation studies and human memory.

2006 ◽  
Vol 86 (3) ◽  
pp. 1033-1048 ◽  
Author(s):  
Yang Dan ◽  
Mu-Ming Poo

Information in the nervous system may be carried by both the rate and timing of neuronal spikes. Recent findings of spike timing-dependent plasticity (STDP) have fueled the interest in the potential roles of spike timing in processing and storage of information in neural circuits. Induction of long-term potentiation (LTP) and long-term depression (LTD) in a variety of in vitro and in vivo systems has been shown to depend on the temporal order of pre- and postsynaptic spiking. Spike timing-dependent modification of neuronal excitability and dendritic integration was also observed. Such STDP at the synaptic and cellular level is likely to play important roles in activity-induced functional changes in neuronal receptive fields and human perception.


2019 ◽  
Vol 116 (12) ◽  
pp. 5737-5746 ◽  
Author(s):  
Karen Ka Lam Pang ◽  
Mahima Sharma ◽  
Kumar Krishna-K. ◽  
Thomas Behnisch ◽  
Sreedharan Sajikumar

In spike-timing-dependent plasticity (STDP), the direction and degree of synaptic modification are determined by the coherence of pre- and postsynaptic activities within a neuron. However, in the adult rat hippocampus, it remains unclear whether STDP-like mechanisms in a neuronal population induce synaptic potentiation of a long duration. Thus, we asked whether the magnitude and maintenance of synaptic plasticity in a population of CA1 neurons differ as a function of the temporal order and interval between pre- and postsynaptic activities. Modulation of the relative timing of Schaffer collateral fibers (presynaptic component) and CA1 axons (postsynaptic component) stimulations resulted in an asymmetric population STDP (pSTDP). The resulting potentiation in response to 20 pairings at 1 Hz was largest in magnitude and most persistent (4 h) when presynaptic activity coincided with or preceded postsynaptic activity. Interestingly, when postsynaptic activation preceded presynaptic stimulation by 20 ms, an immediate increase in field excitatory postsynaptic potentials was observed, but it eventually transformed into a synaptic depression. Furthermore, pSTDP engaged in selective forms of late-associative activity: It facilitated the maintenance of tetanization-induced early long-term potentiation (LTP) in neighboring synapses but not early long-term depression, reflecting possible mechanistic differences with classical tetanization-induced LTP. The data demonstrate that a pairing of pre- and postsynaptic activities in a neuronal population can greatly reduce the required number of synaptic plasticity-evoking events and induce a potentiation of a degree and duration similar to that with repeated tetanization. Thus, pSTDP determines synaptic efficacy in the hippocampal CA3–CA1 circuit and could bias the CA1 neuronal population toward potentiation in future events.


2012 ◽  
Vol 108 (2) ◽  
pp. 551-566 ◽  
Author(s):  
Jason F. Hunzinger ◽  
Victor H. Chan ◽  
Robert C. Froemke

Studies of spike timing-dependent plasticity (STDP) have revealed that long-term changes in the strength of a synapse may be modulated substantially by temporal relationships between multiple presynaptic and postsynaptic spikes. Whereas long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength have been modeled as distinct or separate functional mechanisms, here, we propose a new shared resource model. A functional consequence of our model is fast, stable, and diverse unsupervised learning of temporal multispike patterns with a biologically consistent spiking neural network. Due to interdependencies between LTP and LTD, dendritic delays, and proactive homeostatic aspects of the model, neurons are equipped to learn to decode temporally coded information within spike bursts. Moreover, neurons learn spike timing with few exposures in substantial noise and jitter. Surprisingly, despite having only one parameter, the model also accurately predicts in vitro observations of STDP in more complex multispike trains, as well as rate-dependent effects. We discuss candidate commonalities in natural long-term plasticity mechanisms.


2012 ◽  
Vol 107 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Aleksey V. Zaitsev ◽  
Roger Anwyl

The induction of long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic currents was investigated in proximal synapses of layer 2/3 pyramidal cells of the rat medial prefrontal cortex. The spike timing-dependent plasticity (STDP) induction protocol of negative timing, with postsynaptic leading presynaptic stimulation of action potentials (APs), induced LTD as expected from the classical STDP rule. However, the positive STDP protocol of presynaptic leading postsynaptic stimulation of APs predominantly induced a presynaptically expressed LTD rather than the expected postsynaptically expressed LTP. Thus the induction of plasticity in layer 2/3 pyramidal cells does not obey the classical STDP rule for positive timing. This unusual STDP switched to a classical timing rule if the slow Ca2+-dependent, K+-mediated afterhyperpolarization (sAHP) was inhibited by the selective blocker N-trityl-3-pyridinemethanamine (UCL2077), by the β-adrenergic receptor agonist isoproterenol, or by the cholinergic agonist carbachol. Thus we demonstrate that neuromodulators can affect synaptic plasticity by inhibition of the sAHP. These findings shed light on a fundamental question in the field of memory research regarding how environmental and behavioral stimuli influence LTP, thereby contributing to the modulation of memory.


2017 ◽  
Author(s):  
Mohammadreza Soltanipour ◽  
Hamed Seyed-allaei

AbstractWe blended Reinforced Random Walker (RRW) and Spike Timing Dependent Plasticity (STDP) as a minimalistic model to study plasticity of neural network. The model includes walkers which randomly wander on a weighted network. A walker selects a link with a probability proportional to its weight. If the other side of the link is empty, the move succeeds and link’s weight is strengthened (Long Term Potentiation). If the other side is occupied, then the move fails and the weight of the link is weakened (Long Term Depression). Depending on the number of walkers, we observed two phases: ordered (a few strong loops) and disordered (all links are alike). We detected a phase transition from disorder to order depending on the number of walkers. At the transition point, where there was a balance between potentiation and depression, the system became scale-free and histogram of weights was a power law. This work demonstrate how dynamic of a complex adaptive system can lead to critical behavior in its structure via a STDP-like rule.


2019 ◽  
Author(s):  
Sang-Yoon Kim ◽  
Woochang Lim

We consider a two-population network consisting of both inhibitory (I) interneurons and excitatory (E) pyramidal cells. This I-E neuronal network has adaptive dynamic I to E and E to I interpopulation synaptic strengths, governed by interpopulation spike-timing-dependent plasticity (STDP). In previous works without STDPs, fast sparsely synchronized rhythms, related to diverse cognitive functions, were found to appear in a range of noise intensity D for static synaptic strengths. Here, by varying D, we investigate the effect of interpopulation STDPs on fast sparsely synchronized rhythms that emerge in both the I- and the E-populations. Depending on values of D, long-term potentiation (LTP) and long-term depression (LTD) for population-averaged values of saturated interpopulation synaptic strengths are found to occur. Then, the degree of fast sparse synchronization varies due to effects of LTP and LTD. In a broad region of intermediate D, the degree of good synchronization (with higher synchronization degree) becomes decreased, while in a region of large D, the degree of bad synchronization (with lower synchronization degree) gets increased. Consequently, in each I- or E-population, the synchronization degree becomes nearly the same in a wide range of D (including both the intermediate and the large D regions). This kind of “equalization effect” is found to occur via cooperative interplay between the average occupation and pacing degrees of spikes (i.e., the average fraction of firing neurons and the average degree of phase coherence between spikes in each synchronized stripe of spikes in the raster plot of spikes) in fast sparsely synchronized rhythms. Finally, emergences of LTP and LTD of interpopulation synaptic strengths (leading to occurrence of equalization effect) are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic spike times.PACS numbers87.19.lw, 87.19.lm, 87.19.lc


2005 ◽  
Vol 93 (5) ◽  
pp. 2600-2613 ◽  
Author(s):  
Jonathan E. Rubin ◽  
Richard C. Gerkin ◽  
Guo-Qiang Bi ◽  
Carson C. Chow

Calcium has been proposed as a postsynaptic signal underlying synaptic spike-timing–dependent plasticity (STDP). We examine this hypothesis with computational modeling based on experimental results from hippocampal cultures, some of which are presented here, in which pairs and triplets of pre- and postsynaptic spikes induce potentiation and depression in a temporally asymmetric way. Specifically, we present a set of model biochemical detectors, based on plausible molecular pathways, which make direct use of the time course of the calcium signal to reproduce these experimental STDP results. Our model features a modular structure, in which long-term potentiation (LTP) and depression (LTD) components compete to determine final plasticity outcomes; one aspect of this competition is a veto through which appropriate calcium time courses suppress LTD. Simulations of our model are also shown to be consistent with classical LTP and LTD induced by several presynaptic stimulation paradigms. Overall, our results provide computational evidence that, while the postsynaptic calcium time course contains sufficient information to distinguish various experimental long-term plasticity paradigms, small changes in the properties of back-propagation of action potentials or in synaptic dynamics can alter the calcium time course in ways that will significantly affect STDP induction by any detector based exclusively on postsynaptic calcium. This may account for the variability of STDP outcomes seen within hippocampal cultures, under repeated application of a single experimental protocol, as well as for that seen in multiple spike experiments across different systems.


2010 ◽  
Vol 22 (1) ◽  
pp. 244-272 ◽  
Author(s):  
Terry Elliott

A stochastic model of spike-timing-dependent plasticity (STDP) postulates that single synapses presented with a single spike pair exhibit all-or-none quantal jumps in synaptic strength. The amplitudes of the jumps are independent of spiking timing, but their probabilities do depend on spiking timing. By making the amplitudes of both upward and downward transitions equal, synapses then occupy only a discrete set of states of synaptic strength. We explore the impact of a finite, discrete set of strength states on our model, finding three principal results. First, a finite set of strength states limits the capacity of a single synapse to express the standard, exponential STDP curve. We derive the expression for the expected change in synaptic strength in response to a standard, experimental spike pair protocol, finding a deviation from exponential behavior. We fit our prediction to recent data from single dendritic spine heads, finding results that are somewhat better than exponential fits. Second, we show that the fixed-point dynamics of our model regulate the upward and downward transition probabilities so that these are on average equal, leading to a uniform distribution of synaptic strength states. However, third, under long-term potentiation (LTP) and long-term depression (LTD) protocols, these probabilities are unequal, skewing the distribution away from uniformity. If the number of states of strength is at least of order 10, then we find that three effective states of synaptic strength appear, consistent with some experimental data on ternary-strength synapses. On this view, LTP and LTD protocols may therefore be saturating protocols.


Sign in / Sign up

Export Citation Format

Share Document