scholarly journals NITROGEN LIMITATION ADAPTATION functions as a negative regulator of Arabidopsis immunity

2021 ◽  
Author(s):  
Beatriz Val Torregrosa ◽  
Mireia Bundo ◽  
Tzyy Jen Chiou ◽  
Victor Flors ◽  
Blanca San Segundo

Background: Phosphorus is an important macronutrient required for plant growth and development. It is absorbed through the roots in the form of inorganic phosphate (Pi). To cope with Pi limitation, plants have evolved an array of adaptive mechanisms to facilitate Pi acquisition and protect them from stress caused by Pi starvation. The NITROGEN LIMITATION ADAPTION (NLA) gene plays a key role in the regulation of phosphate starvation responses (PSR), its expression being regulated by the microRNA miR827. Stress caused by Pi limiting conditions might also affect the plant response to pathogen infection. However, cross-talk between phosphate signaling pathways and immune responses remains unclear. Results: In this study, we investigated whether NLA plays a role in Arabidopsis immunity. We show that loss-of-function of NLA and MIR827 overexpression causes an increase in phosphate (Pi) content which results in resistance to infection by the fungal pathogen Plectosphaerella cucumerina. The nla mutant plants accumulated callose in their leaves, a response that is also observed in wild-type plants that have been treated with high Pi. We also show that pathogen infection and treatment with fungal elicitors is accompanied by transcriptional activation of MIR827 and down-regulation of NLA. Upon pathogen challenge, nla plants exhibited higher levels of the phytoalexin camalexin compared to wild type plants. Camalexin level also increases in wild type plants treated with high Pi. Furthermore, the nla mutant plants accumulated salicylic acid (SA) and jasmonic acid (JA) in the absence of pathogen infection whose levels further increased upon pathogen. Conclusions: This study shows that NLA acts as a negative regulator of Arabidopsis immunity. Overaccumulation of Pi in nla plants positively affects resistance to infection by fungal pathogens. This piece of information reinforces the idea of signaling convergence between Pi and immune responses for the regulation of disease resistance in Arabidopsis.

2021 ◽  
Author(s):  
Beatriz Val Torregrosa ◽  
Mireia Bundo ◽  
Hector Martin Cardoso ◽  
Marcel Bach Pages ◽  
Tzyy Jen Chiou ◽  
...  

In nature, plants are concurrently exposed to a number of abiotic and biotic stresses. Our understanding of convergence points between responses to combined biotic/abiotic stress pathways remains, however, rudimentary. Here we show that MIR399 overexpression, loss-of-function of PHO2 (PHOSPHATE2), or treatment with high Pi, is accompanied by an increase in phosphate (Pi) content and accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. High Pi plants (e.g. miR399 overexpressor, pho2 mutant, and plants grown under high Pi supply) exhibited resistance to infection by necrotrophic and hemibiotrophic fungal pathogens. In the absence of pathogen infection, the expression level of genes in the salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling pathways was higher in high Pi plants compared to wild type plants, which is consistent with increased levels of SA and JA in non-infected high Pi plants. During infection, an opposite regulation in the two branches of the JA pathway (ERF1/PDF1.2 and MYC2/VSP2) occurs in high Pi plants. Thus, while the ERF1-PDF1 branch positively responds to fungal infection, the MYC2/VSP2 branch is negatively regulated during pathogen infection in high Pi plants. This study supports that Pi accumulation promotes resistance to infection by fungal pathogens in Arabidopsis, while providing a basis to better understand crosstalk between Pi signaling and hormonal signalling pathways for modulation of plant immune responses.


Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3150-3159 ◽  
Author(s):  
Kensuke Kojima ◽  
Marina Konopleva ◽  
Ismael J. Samudio ◽  
Masato Shikami ◽  
Maria Cabreira-Hansen ◽  
...  

AbstractAlthough TP53 mutations are rare in acute myeloid leukemia (AML), inactivation of wild-type p53 protein frequently occurs through overexpression of its negative regulator MDM2 (murine double minute 2). Recently, small-molecule antagonists of MDM2, Nutlins, have been developed that inhibit the p53-MDM2 interaction and activate p53 signaling. Here, we study the effects of p53 activation by Nutlin-3 in AML cells. Treatment with MDM2 inhibitor triggered several molecular events consistent with induction of apoptosis: loss of mitochondrial membrane potential, caspase activation, phosphatidylserine externalization, and DNA fragmentation. There was a positive correlation in primary AML samples with wild-type p53 between baseline MDM2 protein levels and apoptosis induced by MDM2 inhibition. No induction of apoptosis was observed in AML samples harboring mutant p53. Colony formation of AML progenitors was inhibited in a dose-dependent fashion, whereas normal CD34+ progenitor cells were less affected. Mechanistic studies suggested that Nutlin-induced apoptosis was mediated by both transcriptional activation of proapoptotic Bcl-2 family proteins, and transcription-independent mitochondrial permeabilization resulting from mitochondrial p53 translocation. MDM2 inhibition synergistically enhanced cytotoxicity of cytosine arabinoside and doxorubicin in AML blasts but not in normal hematopoietic progenitor cells. p53 activation by targeting the p53-MDM2 interaction might offer a novel therapeutic strategy for AML that retain wild-type p53.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Margaret S. Bynoe ◽  
Adam T. Waickman ◽  
Deeqa A. Mahamed ◽  
Cynthia Mueller ◽  
Jeffrey H. Mills ◽  
...  

CD73 is a glycosyl-phosphatidylinositol-(GPI-) linked membrane protein that catalyzes the extracellular dephosphorylation of adenosine monophosphate (AMP) to adenosine. Adenosine is a negative regulator of inflammation and prevents excessive cellular damage. We investigated the role of extracellular adenosine in the intestinal mucosa during the development of Dextran-Sulfate-Sodium-(DSS-)salt-induced colitis in mice that lack CD73 (CD73−/−) and are unable to synthesize extracellular adenosine. We have found that, compared to wild-type (WT) mice, CD73−/−mice are highly susceptible to DSS-induced colitis. CD73−/−mice exhibit pronounced weight loss, slower weight recovery, an increase in gut permeability, a decrease in expression of tight junctional adhesion molecules, as well as unresolved inflammation following the removal of DSS. Moreover, colonic epithelia in CD73−/−mice exhibited increased TLR9 expression, high levels of IL-1βand TNF-α, and constitutive activation of NF-κB. We conclude that CD73 expression in the colon is critical for regulating the magnitude and the resolution of colonic immune responses.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 43-61 ◽  
Author(s):  
T Schedl ◽  
J Kimble

Abstract This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.


2021 ◽  
Vol 118 (27) ◽  
pp. e2026152118
Author(s):  
Daniela Paula de Toledo Thomazella ◽  
Kyungyong Seong ◽  
Rebecca Mackelprang ◽  
Douglas Dahlbeck ◽  
Yu Geng ◽  
...  

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 653-653
Author(s):  
Yizhen Li ◽  
Maoxiang Qian ◽  
Meenakshi Devidas ◽  
Wentao Yang ◽  
Stuart S. Winter ◽  
...  

Previous studies by us and others have linked germline genetic variants to the familial predisposition to childhood B-cell acute lymphoblastic leukemia (B-ALL), with pathogenic variants discovered in TP53, PAX5, ETV6, and IKZF1 (J. Clin. Oncol 2018, Nature Genet 2014, Lancet Oncol 2015, Cancer Cell 2018). However, genetic predisposition to T-ALL is much less understood. Rare care reports of T-ALL pedigrees with germline RUNX1 point to its potential role in ALL susceptibility. RUNX1 plays significant roles in definitive hematopoiesis and primarily functions as a transcription factor. RUNX1 germline variants are associated with familial platelet disorder, with a significant proportion of patients also developing myeloid malignancies. To comprehensively examine the pattern and prevalence of RUNX1 germline variation in T-ALL, we performed targeted germline sequencing of 1,231 cases enrolled on the Children's Oncology Group AALL0434 trial. In this largely unbiased T-ALL cohort, we identified 13 germline RUNX1 variants in 16 cases (Figure 1), including six missense (46.2%), two nonsense (15.4%), three frameshift (23.1%), and two indel variants (15.4%). These variants are divided into three groups: Group I, truncating both the DNA-binding RHD domain and the transcriptional activation AD domain (p.K117* and p.S141fs); Group II, truncating the AD domain only (p.Q213fs, p.R232fs, and p.Y287*); and Group III, missense and indel variants. To comprehensively characterize the function of these T-ALL-related RUNX1 variants, we performed a variety of biochemical and cellular assays in different model systems. Using reporter gene assays, we first directly evaluated the transcriptional activity of RUNX1 variants in Hela cells and identified both loss-of-function (e.g., Group I variants) and dominant-negative effects (e.g., p.G365R in Group III variants). Group I variants also showed dramatic subcellular mislocalization in the cytoplasm, with concomitant loss of CBFβ binding, both of which were significantly subtler for Groups II and III variants. Focusing on representative variants in these three groups (p.S141fs, p.R232fs, Y287*, and p.G365R), we next examined their effects on hematopoietic phenotypes in vitro. Ectopic expression of Group II and III variants in human CD34+ cells significantly increased CFU-M/GM colony formation and long-term proliferation, while repressing BFU-E colonies. Variant RUNX1 cells also showed defects in megakaryocyte and pre-T cell differentiation, with decreased apoptosis compared to cells expressing wild-type RUNX1. Expression of Group I variant led to phenotypes similar to that of empty vector, suggesting a complete loss of RUNX1 function. In parallel, we engineered isogenic T-ALL single clones with epitope-tagged RUNX1 variant introduced at the endogenous locus via CRISPR-Cas9 mediated homology recombination. Chromatin immunoprecipitation (ChIP)-seq profiling of these cells suggested a varying degree of changes in RUNX1 binding sites across the genome as a result of the RUNX1 genetic variation. On the other hand, RNA-seq profiling identified down-regulation of genes that were activated by wild-type RUNX1, again confirming the loss-of-function effects of these variants. Finally, we performed whole-genome seq of matched leukemia and germline samples and RNA-seq of leukemia cells in 7 T-ALL cases with RUNX1 predisposition variants. In this analysis, we observed a significant enrichment of JAK3 mutations (5 of 7 cases, 71.4%) compared to a cohort of 264 T-ALL with wild-type RUNX1 in the germline (P=3.39×10-7). By comparison, only 27.3% (3 of 7) of T-ALL with a somatic mutation in RUNX1 had concurrent JAK3 mutations in this cohort. Unsupervised clustering based on RNA-seq derived gene expression profile showed that RUNX1-mutated cases, either germline or somatic, clustered tightly with early T precursor (ETP) and near-ETP immunophenotypes. In conclusion, we comprehensively characterized 13 RUNX1 germline variants in T-ALL, ~40% of which are frameshift or nonsense. These variants result in a loss of function, by disrupting DNA binding or deleting the transcriptional activation domain, and in some cases in a dominant-negative fashion. RUNX1 genetic variation also results in significant defects in hematopoietic cell differentiation and functions in vitro, but additional somatic lesions are most likely required for overt leukemogenesis. Disclosures Gastier Foster: Incyte Corporation: Other: Commercial Research; Bristol Myers Squibb (BMS): Other: Commercial Research. Raetz:Pfizer: Research Funding. Zweidler-McKay:ImmunoGen: Employment. Mullighan:Illumina: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: sponsored travel; Pfizer: Honoraria, Other: speaker, sponsored travel, Research Funding; AbbVie: Research Funding; Loxo Oncology: Research Funding; Amgen: Honoraria, Other: speaker, sponsored travel. Hunger:Amgen: Consultancy, Equity Ownership; Bristol Myers Squibb: Consultancy; Novartis: Consultancy; Jazz: Honoraria. Relling:Servier Pharmaceuticals: Research Funding. Loh:Medisix Therapeutics, Inc.: Membership on an entity's Board of Directors or advisory committees.


1999 ◽  
Vol 181 (11) ◽  
pp. 3392-3401 ◽  
Author(s):  
Kiyoshi Matsuno ◽  
Abraham L. Sonenshein

ABSTRACT Deletion of the citC gene, coding for isocitrate dehydrogenase, arrests sporulation of Bacillus subtilis at stage I after bipolar localization of the cell division protein FtsZ but before formation of the asymmetric septum. A spontaneous extragenic suppressor mutation that overcame the stage I block was found to map within the spoVG gene. The suppressing mutation and otherspoVG loss-of-function mutations enabled citCmutant cells to form asymmetric septa and to activate the forespore-specific sigma factor ςF. However, little induction of mother cell-specific, ςE-dependent sporulation genes was observed in a citC spoVG double mutant, indicating that there is an additional defect(s) in compartmentalized gene expression in the citC mutant. These other defects could be partially overcome by reducing the synthesis of citrate, by buffering the medium, or by adding excess MnCl2. Overexpression of the spoVG gene in wild-type cells significantly delayed ςF activation. Increased expression and stability of SpoVG in citC mutant cells may contribute to the citC mutant phenotype. Inactivation of the spoVG gene caused a population of otherwise wild-type cells to produce a small number of minicells during growth and caused sporulating cells to complete asymmetric septation more rapidly than normal. Unlike the case for inactivation of the cell division inhibitor gene minD, many of these minicells contained DNA and appeared only when the primary sporulation signal transduction pathway, the Spo0A phosphorelay, was active. These results suggest that SpoVG interferes with or is a negative regulator of the pathway leading to asymmetric septation.


2018 ◽  
Vol 31 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Raquel Salvador-Guirao ◽  
Patricia Baldrich ◽  
Detlef Weigel ◽  
Ignacio Rubio-Somoza ◽  
Blanca San Segundo

MicroRNAs (miRNAs) are 21- to 24-nucleotide short noncoding RNAs that trigger gene silencing in eukaryotes. In plants, miRNAs play a crucial role in a wide range of developmental processes and adaptive responses to abiotic and biotic stresses. In this work, we investigated the role of miR773 in modulating resistance to infection by fungal pathogens in Arabidopsis thaliana. Interference with miR773 activity by target mimics (in MIM773 plants) and concomitant upregulation of the miR773 target gene METHYLTRANSFERASE 2 (MET2) increased resistance to infection by necrotrophic (Plectosphaerrella cucumerina) and hemibiotrophic (Fusarium oxysporum, Colletototrichum higginianum) fungal pathogens. By contrast, both MIR773 overexpression and MET2 silencing enhanced susceptibility to pathogen infection. Upon pathogen challenge, MIM773 plants accumulated higher levels of callose and reactive oxygen species than wild-type plants. Stronger induction of defense-gene expression was also observed in MIM773 plants in response to fungal infection. Expression analysis revealed an important reduction in miR773 accumulation in rosette leaves of plants upon elicitor perception and pathogen infection. Taken together, our results show not only that miR773 mediates pathogen-associated molecular pattern-triggered immunity but also demonstrate that suppression of miR773 activity is an effective approach to improve disease resistance in Arabidopsis plants.


2021 ◽  
Vol 118 (32) ◽  
pp. e2026554118
Author(s):  
Crystal M. Vincent ◽  
Marc S. Dionne

Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 781-788 ◽  
Author(s):  
D J Stillman ◽  
S Dorland ◽  
Y Yu

Abstract We have examined mutations which overcome the requirement for SW15-dependent transcriptional activation of the Saccharomyces cerevisiae HO gene. We show that the RPD3 gene is the same as SDI2, and that SIN4 is the same as the TSF3 and SDI3 genes. We have also identified a new swi5 suppressor, RGR1. The RGR1 gene was identified originally as a negative regulator of SUC2. Epistasis analysis indicates that six swi5 suppressor genes function in four distinct pathways, with RPD3 and SIN3 in one pathway, RGR1 and SIN4 in a second pathway, and SDI4 and SIN5 each in distinct pathways. Finally, we show that complete suppression of the swi5 defect in HO expression by sin5 requires the wild-type ACE2 gene. This suggests that one function of SIN5 is to prevent ACE2, a SWI5 homolog, from activating HO expression.


Sign in / Sign up

Export Citation Format

Share Document