Two schizophrenia imaging signatures and their associations with cognition, psychopathology, and genetics in the general population
The prevalence and significance of schizophrenia-related phenotypes at the population-level are debated in the literature. Here we assess whether two recently reported neuroanatomical signatures of schizophrenia, signature 1 with widespread reduction of gray matter volume, and signature 2 with increased striatal volume, could be replicated in an independent schizophrenia sample, and investigate whether expression of these signatures can be detected at the population-level and how they relate to cognition, psychosis spectrum symptoms, and schizophrenia genetic risk. This cross-sectional study used an independent schizophrenia-control sample (n=347; age 16-57 years) for replication of imaging signatures, and then examined two independent population-level datasets: Philadelphia Neurodevelopmental Cohort [PNC; n=359 typically developing (TD) and psychosis-spectrum symptoms (PS) youth] and UK Biobank (UKBB; n=836; age 44-50 years) adults. We quantified signature expression using support-vector machine learning, and compared cognition, psychopathology, and polygenic risk between signatures. Two neuroanatomical signatures of schizophrenia were replicated. Signature 1 but not signature 2 was significantly more common in youth with PS than TD youth, whereas signature 2 frequency was similar. In both youth and adults, signature 1 had worse cognitive performance than signature 2. Compared to adults with neither signature, adults expressing signature 1 had elevated schizophrenia polygenic risk scores, but this was not seen for signature 2. We successfully replicate two neuroanatomical signatures of schizophrenia, and describe their prevalence in population-based samples of youth and adults. We further demonstrate distinct relationships of these signatures with psychosis symptoms, cognition, and genetic risk, potentially reflecting underlying neurobiological vulnerability.