Visualization of SpoVAEa protein dynamics in dormant spores of Bacillus cereus and dynamic changes in their germinosomes and SpoVAEa during germination
Bacillus cereus spores, like most Bacillus spores, can survive for years depending on their specific structure, and germinate when their surroundings become suitable. Spore germination proteins play an important role in the initiation of germination. Because germinated spores lose the extreme resistance of the dormant state, more information related to the function of germination proteins could be useful to develop new strategies to control B. cereus spores. Prior work has shown that: i) the channel protein SpoVAEa exhibits high frequency movement in the outer leaflet of the inner membrane (IM) in dormant spores of B. subtilis; ii) the dynamics of germinosome formation in developing spores of B. cereus indicate that the formation of germinosome foci is slower than foci formation of germinant receptor GerR and scaffold protein GerD. However, the dynamics of movement of SpoVAEa in B. cereus spores, and the complete behavior of the germinosome in germinated spores of B. cereus are still unclear. In this study, we found that the SpoVAEa fluorescent foci in dormant spores of B. cereus redistribute at a lower frequency than in B. subtilis, and likely colocalize with GerD in dormant spores. Our results further indicate that: i) overexpression of GerR(A-C-B)-SGFP2 and SpoVAEa-SGFP2 with GerD-mScarlet-I from a plasmid leads to more heterogeneity and lower efficiency of spore germination in B. cereus; ii), germinosome foci composed of GerR(A-C-B)-SGFP2 and GerD-mScarlet-I were lost prior to the phase transition in germination; and iii) GerD-mScarlet-I foci spread out but continued to exist beyond the phase transition of B. cereus spores.