scholarly journals Controlled cycling and quiescence enables homology directed repair in engraftment-enriched adult hematopoietic stem and progenitor cells

2018 ◽  
Author(s):  
Jiyung Shin ◽  
Stacia K. Wyman ◽  
Mark A. Dewitt ◽  
Nicolas L Bray ◽  
Jonathan Vu ◽  
...  

SummaryHematopoietic stem cells (HSCs) are the source of all blood components, and genetic defects in these cells are causative of disorders ranging from severe combined immunodeficiency to sickle cell disease. However, genome editing of long-term repopulating HSCs to correct mutated alleles has been challenging. HSCs have the ability to either be quiescent or cycle, with the former linked to stemness and the latter involved in differentiation. Here we investigate the link between cell cycle status and genome editing outcomes at the causative codon for sickle cell disease in adult human CD34+ hematopoietic stem and progenitor cells (HSPCs). We show that quiescent HSPCs that are immunophenotypically enriched for engrafting stem cells predominantly repair Cas9-induced double strand breaks (DSBs) through an error-prone non-homologous end-joining (NHEJ) pathway and exhibit almost no homology directed repair (HDR). By contrast, non-quiescent cycling stem-enriched cells repair Cas9 DSBs through both error-prone NHEJ and fidelitous HDR. Pre-treating bulk CD34+ HSPCs with a combination of mTOR and GSK-3 inhibitors to induce quiescence results in complete loss of HDR in all cell subtypes. We used these compounds, which were initially developed to maintain HSCs in culture, to create a new strategy for editing adult human HSCs. CD34+ HSPCs are edited, allowed to briefly cycle to accumulate HDR alleles, and then placed back in quiescence to maintain stemness, resulting in 6-fold increase in HDR/NHEJ ratio in quiescent, stem-enriched cells. Our results reveal the fundamental tension between quiescence and editing in human HSPCs and suggests strategies to manipulate HSCs during therapeutic genome editing.

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2199
Author(s):  
Caterina P. Minniti ◽  
Seda S. Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Karl Robert ◽  
...  

The concentration of circulating hematopoietic stem and progenitor cells has not been studied longitudinally. Here, we report that the proportions of Lin-CD34+38- hematopoietic multipotent cells (HMCs) and of Lin-CD34+CD38+ hematopoietic progenitors cells (HPCs) are highly variable between individuals but stable over long periods of time, in both healthy individuals and sickle cell disease (SCD) patients. This suggests that these proportions are regulated by genetic polymorphisms or by epigenetic mechanisms. We also report that in SCD patients treated with hydroxyurea, the proportions of circulating HMCs and HPCs show a strong positive and negative correlation with fetal hemoglobin (HbF) levels, respectively. Titration of 65 cytokines revealed that the plasma concentration of chemokines CCL2, CCL11, CCL17, CCL24, CCL27, and PDGF-BB were highly correlated with the proportion of HMCs and HPCs and that a subset of these cytokines were also correlated with HbF levels. A linear model based on four of these chemokines could explain 80% of the variability in the proportion of circulating HMCs between individuals. The proportion of circulating HMCs and HPCs and the concentration of these chemokines might therefore become useful biomarkers for HbF response to HU in SCD patients. Such markers might become increasingly clinically relevant, as alternative treatment modalities for SCD are becoming available.


2015 ◽  
Vol 23 ◽  
pp. S48
Author(s):  
Megan D. Hoban ◽  
Matthew C. Mendel ◽  
Zulema Romero ◽  
Michael L. Kaufman ◽  
Alok V. Joglekar ◽  
...  

2016 ◽  
Vol 113 (38) ◽  
pp. 10661-10665 ◽  
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Yuting Tan ◽  
Ashley I. Beyer ◽  
Fei Xie ◽  
...  

Hereditary persistence of fetal hemoglobin (HPFH) is a condition in some individuals who have a high level of fetal hemoglobin throughout life. Individuals with compound heterozygous β-thalassemia or sickle cell disease (SCD) and HPFH have milder clinical manifestations. Using RNA-guided clustered regularly interspaced short palindromic repeats-associated Cas9 (CRISPR-Cas9) genome-editing technology, we deleted, in normal hematopoietic stem and progenitor cells (HSPCs), 13 kb of the β-globin locus to mimic the naturally occurring Sicilian HPFH mutation. The efficiency of targeting deletion reached 31% in cells with the delivery of both upstream and downstream breakpoint guide RNA (gRNA)-guided Staphylococcus aureus Cas9 nuclease (SaCas9). The erythroid colonies differentiated from HSPCs with HPFH deletion showed significantly higher γ-globin gene expression compared with the colonies without deletion. By T7 endonuclease 1 assay, we did not detect any off-target effects in the colonies with deletion. We propose that this strategy of using nonhomologous end joining (NHEJ) to modify the genome may provide an efficient approach toward the development of a safe autologous transplantation for patients with homozygous β-thalassemia and SCD.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1227-1227
Author(s):  
Elisabeth H. Javazon ◽  
Leslie S. Kean ◽  
Jennifer Perry ◽  
Jessica Butler ◽  
David R. Archer

Abstract Gene therapy and stem cell transplantation are attractive potential therapies for sickle cell disease (SCD). Previous studies have shown that the sickle environment is highly enriched for reactive oxygen species (ROS), but have not addressed whether or not the increased ROS may alter the bone marrow (BM) microenvironment or affect stem cell function. Using the Berkeley sickle mouse model, we examined the effects of sickle cell disease on hematopoietic stem cell function and the bone marrow microenvironment. We transplanted C57BL/6 (control) BM into C57BL/6 and homozygous sickle mice. Recipients received 2 × 106 BM cells and a conditioning regimen consisting of busulfan, anti-asialo GM1, and co-stimulation blockade (anti-CD40L and CTLA4-Ig). Following transplantation, sickle mice demonstrated increased donor cell engraftment in the peripheral blood compared to normal mice (58.3% vs. 33.1%, respectively). Similarly, BMT in a fully allogeneic system also resulted in enhanced engraftment in sickle recipients. Next we analyzed whether or not engraftment defects exist within the BM stem cell population of sickle mice. In vitro colony forming assays showed a significant decrease in progenitor colony formation in sickle compared to control BM. By flow cytometry, we determined that there was a significant decrease in the KSL (c-Kit+, Sca-1+, Lineage−) progenitor population within the BM of sickle mice. Cell cycle analysis of the KSL population demonstrated that significantly fewer sickle KSL cells were in G0 phase compared to control, suggesting that there are fewer quiescent stem cells in the BM of sickle mice. To assess the potential role of ROS and glutathione depletion in sickle mice, we tested the engraftment efficiency of KSL cells from untreated and n-acetyl-cysteine (NAC) treated control, hemizygous sickle (hemi), and sickle mice in a competitive repopulation experiment. Peripheral chimerism showed an engraftment defect from both hemizygous and homozygous sickle mice such that control KSL cells engrafted > hemi > sickle at a ratio of 1 : 0.4 : 0.25. Treatment with NAC for four months prior to transplantation partially restored KSL engraftment (control : hemi : sickle; 1 : 0.97 : 0.56 ). We have demonstrated that congenic and allogeneic BMT into sickle mice result in increased donor cell engraftment in the sickle recipients. Both the decreased number of KSL cells and the decreased percentage of quiescent KSL cells in the sickle mice indicate that more stem cells in the transgenic sickle mouse model are mobilized from the BM environment. The engraftment defect of sickle KSL cells that was partially ameliorated by NAC treatment suggests that an altered redox environment in sickle mice may contribute to the engraftment deficiencies that we observed.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5557-5557
Author(s):  
Mandula Borjigin ◽  
Eric Brian Kmiec ◽  
Rigumula Wu

Abstract In sickle cell disease, a single point mutation in hemoglobin β gene (HBB) results in the substitution of valine for glutamic acid at position 6 of the β globin protein sequence, causing the deformation of red blood cells into a sickle (or crescent) shape. With the development of powerful gene editing tools, scientists are initiating the correction of the point mutation of HBB gene in CD34+ hematopoietic stem cells and induced pluripotent stem cells. Although the results are very exciting, the evaluation method of the gene editing is primitive. Currently, the modification at the mutation site is identified and quantified using Restriction Fragment Length Polymorphism (RFLP), which involves PCR amplification, restriction enzyme digestion and gel electrophoresis. The accuracy of the gene editing efficiency depends heavily on the quantification of the DNA bands in the gel images, which is inherently imprecise. We have developed a novel technique to quantify the correction efficiency of HBB gene editing using a fluorescence tagging of the edited DNA sequence. This method provides excellent sensitivity and accuracy, and saves time and labor, eliminating a process of gel electrophoresis. We demonstrate the assessment of gene editing in HBB of K562 cells, in which the wild type HBB (βA gene) is converted to mutant βs using the gene editing tools (i.e. Transcription Activator-Like Effector Nucleases (TALENs) and single-stranded oligo deoxynucleotides (ssODNs)). We present limited information here due to the sensitivity of the intellectual property, but will discuss in detail the experimental procedures and data at the American Society of Hematology meeting. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Seda S Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Shouping Zhang ◽  
Karl Roberts ◽  
...  

The consequences of Sickle Cell Disease (SCD), including ongoing hematopoietic stress and hemolysis, vascular damage and chronic therapies , such as blood transfusions and Hydroxyurea on hematopoietic stem and progenitor cell (HSPC) have not been characterized. We have quantified the frequencies of nine HSPC populations by flow cytometry in the peripheral blood of pediatric and adult patients stratified by treatment and controls. We observed broad differences between SCD patients and healthy controls. SCD is associated with 10 to 20-fold increase in CD34dim cells, and two to five-fold more CD34bright cells, a depletion in Megakaryocyte-Erythroid Progenitors and an increase in hematopoietic stem cells, when compared to controls. SCD is also associated with abnormal expression of CD235a and by very high levels of expression of the CD49f antigen. These findings were present to varying degrees in all patients, whether or not they were naïve or on chronic therapy. HU treatment tended to normalizes many of these parameters. Chronic stress erythropoiesis, inflammation caused by SCD and hydroxyurea therapy have long been suspected of causing premature aging of the hematopoietic system, and potentially increasing the risk of hematological malignancies. An important finding of this study was that the observed concentration of CD34bright cells and of all the HSPCs decreased logarithmically with time of treatment with HU. This correlation was independent of age and specific to HU treatment. Although the number of circulating HSPCs is influenced by many parameters, our findings suggest that HU treatment may decrease premature aging and hematologic malignancy risk compared to the other therapeutic modalities in SCD.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4703-4703 ◽  
Author(s):  
So Hyun Park ◽  
Ciaran M Lee ◽  
Harshavardhan Deshmukh ◽  
Gang Bao

Abstract Introduction Sickle cell disease (SCD) is one of the most common monogenic disorders, affecting millions worldwide. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution from A to T in the codon for the sixth amino acid in the β-globin protein converts a glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which impairs the function of the red blood cells (RBCs). Allogeneic hematopoietic stem cell transplantation (HSCT) is the only available cure, but it is feasible for only a small subpopulation (<15%) of patients and may be associated with a high risk. Here, we show that targeted genome editing can potentially provide a permanent cure for SCD by correcting the sickle mutation in clinically relevant hematopoietic stem and progenitor cells (HSPCs) for autologous transplantation. Methods For proof-of-concept, we designed CRISPR/Cas9 systems and donor templates to introduce the sickle mutation into wild-type (WT) HBB of mobilized peripheral blood CD34+ cells. To assess genome-editing outcomes mediated by CRISPR/Cas9 systems, we developed a novel digital droplet PCR (ddPCR) assay that can quantify the rates of non-homologous end joining (NHEJ) and homology directed repair (HDR) events simultaneously following the generation of DNA double strand breaks. The assay enables rapid and accurate quantification of gene modifications in HSPCs by CRISPR/Cas9 genome-editing. Specifically, Streptococcus pyogenes (Spy) Cas9 proteins, guide RNAs (gRNA), and single-stranded DNA (ssDNA) donor templates were delivered into CD34+ cells by nucleofection with optimized conditions. Different gRNAs targeting HBB near the SCD mutation site were tested, and the optimal gRNA was chosen based on high on-target activity and proximity to the mutation site. The optimal DNA donor design and concentration were determined based on the frequency of HDR events and viability/growth rate of edited cells. Treated samples and untreated controls were assayed as both single cell clones and in bulk culture. In 2-phase liquid culture, genome editing frequencies at both DNA and mRNA levels were quantified by ddPCR to confirm persistence of edited cells in the heterozygous population over time. The expression of globins and other erythroid markers were monitored using flow cytometry and real time PCR to determine if genome editing had any effect on the kinetics of erythropoiesis. Colony formation assays were used to determine the number and type of colonies following induction of differentiation. Colony ddPCR was performed to determine the genotype of edited cells. Wright/Giemsa stain was used to confirm terminal maturation of erythrocytes into enucleated RBC. Native polyacrylamide gel electrophoresis (PAGE) and high performance liquid chromatography (HPLC) were used to confirm translation of edited β-globin protein and formation of HbS. Results and Discussion We found that the efficiency of site-specific gene correction could be substantially improved by optimizing the CRISPR/Cas9 systems for genome editing. For example, with optimization, we achieved ~30% HDR rates in CD34+ cells with >80% cell viability. The HDR-modified alleles persisted in the population over the course of differentiation, and the edited CD34+ cells retained differentiation potential. Genotyping of individual erythroid colonies confirmed that up to 35% of colonies are either homozygous or heterozygous for HDR alleles. Following differentiation, treated cells express modified HBB mRNA and HbS. In addition, the off-target activity of the HBB-specific gRNAs was determined using both bioinformatics tools and unbiased genome-wide mapping techniques. Ongoing work includes the validation of gene correction in SCD patient derived HSPCs, characterization of modified cells in vitro and in vivo to assess the therapeutic potential, and analysis of long-term genotoxicity. Conclusions Based on the proof-of-concept study, we demonstrate that using the optimized CRISPR/Cas9 system and donor template, an HDR rate of ~30% can be achieved in CD34+ cells. The gene corrected cells have the potential to differentiate into erythroid cells that permanently produce WT β-globin. Our findings provide promising evidence for clinical translation of the HSPCs genome correction strategy in treating SCD patients, as well as correcting gene defects underlying other inherited single-gene disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3119-3119
Author(s):  
Fabrizia Urbinati ◽  
Zulema Romero Garcia ◽  
Sabine Geiger ◽  
Rafael Ruiz de Assin ◽  
Gabriela Kuftinec ◽  
...  

Abstract Abstract 3119 BACKGROUND: Sickle cell disease (SCD) affects approximately 80, 000 Americans, and causes significant neurologic, pulmonary, and renal injury, as well as severe acute and chronic pain that adversely impacts quality of life. Because SCD results from abnormalities in red blood cells, which in turn are produced from adult hematopoietic stem cells, hematopoietic stem cell transplant (HSCT) from a healthy (allogeneic) donor can benefit patients with SCD, by providing a source for life-long production of normal red blood cells. However, allogeneic HSCT is limited by the availability of well-matched donors and by immunological complications of graft rejection and graft-versus-host disease. Thus, despite major improvements in clinical care, SCD continues to cause significant morbidity and early mortality. HYPOTHESIS: We hypothesize that autologous stem cell gene therapy for SCD has the potential to treat this illness without the need for immune suppression of current allogeneic HSCT approaches. Previous studies have demonstrated that addition of a β-globin gene, modified to have the anti-sickling properties of fetal (γ-) globin (βAS3), to bone marrow (BM) stem cells in murine models of SCD normalizes RBC physiology and prevents the manifestations of sickle cell disease (Levassuer Blood 102 :4312–9, 2003). The present work seeks to provide pre-clinical evidence of efficacy for SCD gene therapy using human BM CD34+ cells modified with the bAS3 lentiviral (LV) vector. RESULTS: The βAS3 globin expression cassette was inserted into the pCCL LV vector backbone to confer tat-independence for packaging. The FB (FII/BEAD-A) composite enhancer-blocking insulator was inserted into the 3' LTR (Ramezani, Stem Cells 26 :32–766, 2008). Assessments were performed transducing human BM CD34+ cells from healthy or SCD donors with βAS3 LV vectors. Efficient (1–3 vector copies/cell) and stable gene transmission were determined by qPCR and Southern Blot. CFU assays demonstrated that βAS3 gene modified SCD CD34+ cells are fully capable of maintaining their hematopoietic potential. To demonstrate the effectiveness of the erythroid-specific bAS3 gene in the context of human HSPC (Hematopoietic Stem and Progenitor Cells), we optimized an in vitro model of erythroid differentiation of huBM CD34+ cells. We successfully obtained an expansion up to 700 fold with >80% fully mature enucleated RBC derived from CD34+ cells obtained from healthy or SCD BM donors. We then assessed the expression of the βAS3 globin gene by isoelectric focusing: an average of 18% HbAS3 over the total globin present (HbS, HbA2) per Vector Copy Number (VCN) was detected in RBC derived from SCD BM CD34+. A qRT-PCR assay able to discriminate HbAS3 vs. HbA RNA, was also established, confirming the quantitative expression results obtained by isoelectric focusing. Finally, we show morphologic correction of in vitro differentiated RBC obtained from SCD BM CD34+ cells after βAS3 LV transduction; upon induction of deoxygenation, cells derived from SCD patients showed the typical sickle shape whereas significantly reduced numbers were detected in βAS3 gene modified cells. Studies to investigate risks of insertional oncogenesis from gene modification of CD34+ cells by βAS3 LV vectors are ongoing as are in vivo studies to demonstrate the efficacy of βAS3 LV vector in the NSG mouse model. CONCLUSIONS: This work provides initial evidence for the efficacy of the modification of human SCD BM CD34+ cells with βAS3 LV vector for gene therapy of sickle cell disease. This work was supported by the California Institute for Regenerative Medicine Disease Team Award (DR1-01452). Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document