scholarly journals Polygenic adaptation: From sweeps to subtle frequency shifts

2018 ◽  
Author(s):  
Ilse Höllinger ◽  
Pleuni S Pennings ◽  
Joachim Hermisson

1AbstractEvolutionary theory has produced two conflicting paradigms for the adaptation of a polygenic trait. While population genetics views adaptation as a sequence of selective sweeps at single loci underlying the trait, quantitative genetics posits a collective response, where phenotypic adaptation results from subtle allele frequency shifts at many loci. Yet, a synthesis of these views is largely missing and the population genetic factors that favor each scenario are not well understood. Here, we study the architecture of adaptation of a binary polygenic trait (such as resistance) with negative epistasis among the loci of its basis. The genetic structure of this trait allows for a full range of potential architectures of adaptation, ranging from sweeps to small frequency shifts. By combining computer simulations and a newly devised analytical framework based on Yule branching processes, we gain a detailed understanding of the adaptation dynamics for this trait. Our key analytical result is an expression for the joint distribution of mutant alleles at the end of the adaptive phase. This distribution characterizes the polygenic pattern of adaptation at the underlying genotype when phenotypic adaptation has been accomplished. We find that a single compound parameter, the population-scaled background mutation rate Θbg, explains the main differences among these patterns. For a focal locus, Θbg measures the mutation rate at all redundant loci in its genetic background that offer alternative ways for adaptation. For adaptation starting from mutation-selection-drift balance, we observe different patterns in three parameter regions. Adaptation proceeds by sweeps for small Θbg ≾ 0.1, while small polygenic allele frequency shifts require large Θbg ≿ 100. In the large intermediate regime, we observe a heterogeneous pattern of partial sweeps at several interacting loci.2Author summaryIt is still an open question how complex traits adapt to new selection pressures. While population genetics champions the search for selective sweeps, quantitative genetics proclaims adaptation via small concerted frequency shifts. To date the empirical evidence of clear sweep signals is more scarce than expected, while subtle shifts remain notoriously hard to detect. In the current study we develop a theoretical framework to predict the expected adaptive architecture of a simple polygenic trait, depending on parameters such as mutation rate, effective population size, size of the trait basis, and the available genetic variability at the onset of selection. For a population in mutation-selection-drift balance we find that adaptation proceeds via complete or partial sweeps for a large set of parameter values. We predict adaptation by small frequency shifts for two main cases. First, for traits with a large mutational target size and high levels of genetic redundancy among loci, and second if the starting frequencies of mutant alleles are more homogeneous than expected in mutation-selection-drift equilibrium, e.g. due to population structure or balancing selection.

2020 ◽  
Vol 10 (10) ◽  
pp. 3585 ◽  
Author(s):  
Tomasz Krajka

The first problem considered in this paper is the problem of correctness of a mutation model used in the DNA VIEW program. To this end, we theoretically predict population allele frequency changes in time according to this and similar models (we determine the limit frequencies of alleles—they are uniformly distributed). Furthermore, we evaluate the speed of the above changes using computer simulation applied to our DNA database. Comparing uniformly distributed allele frequencies with these existing in the population (for example, using entropy), we conclude that this mutation model is not correct. The evolution does not follow this direction (direction of uniformly distributed frequencies). The second problem relates to the determination of the extent to which an incorrect mutation model can disturb DNA VIEW program results. We show that in typical computations (simple paternity testing without maternal mutation) this influence is negligible, but in the case of maternal mutation, this should be taken into account. Furthermore, we show that this model is inconsistent from a theoretical viewpoint. Equivalent methods result in different error levels.


2015 ◽  
Vol 25 (1) ◽  
pp. 142-156 ◽  
Author(s):  
Christian D. Huber ◽  
Michael DeGiorgio ◽  
Ines Hellmann ◽  
Rasmus Nielsen

1998 ◽  
Vol 35 (03) ◽  
pp. 622-632
Author(s):  
Paul Joyce

Is the Ewens distribution the only one-parameter family of partition structures where the total number of types sampled is a sufficient statistic? In general, the answer is no. It is shown that all counterexamples can be generated via an urn scheme. The urn scheme need only satisfy two general conditions. In fact, the conditions are both necessary and sufficient. However, in particular, for a large class of partition structures that naturally arise in the infinite alleles theory of population genetics, the Ewens distribution is the only one in this class where the total number of types is sufficient for estimating the mutation rate. Finally, asymptotic sufficiency for parametric families of partition structures is discussed.


Author(s):  
David J. Littlewood ◽  
Kyran Mish ◽  
Kendall Pierson

Modal-based methods for structural health monitoring require the identification of characteristic frequencies associated with a structure’s primary modes of failure. A major difficulty is the extraction of damage-related frequency shifts from the large set of often benign frequency shifts observed experimentally. In this study, we apply peridynamics in combination with modal analysis for the prediction of characteristic frequency shifts throughout the damage evolution process. Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture progressive material damage. The application of modal analysis to peridynamic models enables the tracking of structural modes and characteristic frequencies over the course of a simulation. Shifts in characteristic frequencies resulting from evolving structural damage can then be isolated and utilized in the analysis of frequency responses observed experimentally. We present a methodology for quasi-static peridynamic analyses, including the solution of the eigenvalue problem for identification of structural modes. Repeated solution of the eigenvalue problem over the course of a transient simulation yields a data set from which critical shifts in modal frequencies can be isolated. The application of peridynamics to modal analysis is demonstrated on the benchmark problem of a simply-supported beam. The computed natural frequencies of an undamaged beam are found to agree well with the classical local solution. Analyses in the presence of cracks of various lengths are shown to reveal frequency shifts associated with structural damage.


Author(s):  
Daniel R. Roettgen ◽  
Matthew S. Allen ◽  
Dan Osgood ◽  
Stuart Gerger

Segalman recently proposed a model for joint nonlinearity in a built up structure in which each mode is treated independently (orthogonality is assumed to be preserved) and with an Iwan model added to each modal degree of freedom to capture the nonlinearity of all of the joints that are active in that mode. Recent works have shown that this type of model can faithfully describe the nonlinearity in simple laboratory structures and in simulations of structures with several Iwan joints in the micro-slip regime. This work explores the validity of these concepts for more complicated structures, each of which is part of a production automotive exhaust system. Where possible, factory gaskets were used and the bolted joints were tightened per the manufacturer’s specifications. Tests were performed on different subassemblies of the exhaust using a modal hammer to excite the structure and accelerometers to measure its response. Mayes & Allen’s ZEFFT algorithm was used to determine which modes were behaving nonlinearly. Then an algorithm based on the Hilbert transform was used to extract the instantaneous frequency and damping for the modes of interest and to fit the behavior to a modal Iwan model. The results show several modes that exhibit small frequency shifts and damping that changes by as much as a factor of two over the range of forces that were employed.


1987 ◽  
Vol 41 (4) ◽  
pp. 671-674 ◽  
Author(s):  
Rodrigue Savoie ◽  
Marc Langlais ◽  
Pierre Beauchesne

A dual illuminator suitable for Raman difference spectroscopy is described. The system, which can be readily adapted for use with computer-controlled Raman spectrometers, provides a differential frequency accuracy (ca. ±0.03 cm−1) which is comparable to that of other existing devices. The individual control of the temperature of each sample makes it possible to obtain thermally induced Raman difference spectra, where-by very small frequency shifts associated with changes in temperature can be accurately measured. An example of application to the study of the gel-to-liquid crystal transition of a phospholipid (DPPG) is given.


Sign in / Sign up

Export Citation Format

Share Document