scholarly journals Genome-wide strategies reveal target genes of Npas4l associated with cardiovascular development in zebrafish

2018 ◽  
Author(s):  
Michele Marass ◽  
Arica Beisaw ◽  
Claudia Gerri ◽  
Francesca Luzzani ◽  
Nana Fukuda ◽  
...  

ABSTRACTThe development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we combined complementary genome-wide approaches including transcriptome analyses and chromatin immunoprecipitation (ChIP). The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes crucial for hematoendothelial specification such as etv2, tal1 and lmo2. We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.

2002 ◽  
Vol 22 (8) ◽  
pp. 2642-2649 ◽  
Author(s):  
Stéphane Le Crom ◽  
Frédéric Devaux ◽  
Philippe Marc ◽  
Xiaoting Zhang ◽  
W. Scott Moye-Rowley ◽  
...  

ABSTRACT Yrr1p is a recently described Zn2Cys6 transcription factor involved in the pleiotropic drug resistance (PDR) phenomenon. It is controlled in a Pdr1p-dependent manner and is autoregulated. We describe here a new genome-wide approach to characterization of the set of genes directly regulated by Yrr1p. We found that the time-course production of an artificial chimera protein containing the DNA-binding domain of Yrr1p activated the 15 genes that are also up-regulated by a gain-of-function mutant of Yrr1p. Gel mobility shift assays showed that the promoters of the genes AZR1, FLR1, SNG1, YLL056C, YLR346C, and YPL088W interacted with Yrr1p. The putative consensus Yrr1p binding site deduced from these experiments, (T/A)CCG(C/T)(G/T)(G/T)(A/T)(A/T), is strikingly similar to the PDR element binding site sequence recognized by Pdr1p and Pdr3p. The minor differences between these sequences are consistent with Yrr1p and Pdr1p and Pdr3p having different sets of target genes. According to these data, some target genes are directly regulated by Pdr1p and Pdr3p or by Yrr1p, whereas some genes are indirectly regulated by the activation of Yrr1p. Some genes, such as YOR1, SNQ2, and FLR1, are clearly directly controlled by both classes of transcription factor, suggesting an important role for the corresponding membrane proteins.


2020 ◽  
Vol 126 (7) ◽  
pp. 875-888 ◽  
Author(s):  
Samir Sissaoui ◽  
Jun Yu ◽  
Aimin Yan ◽  
Rui Li ◽  
Onur Yukselen ◽  
...  

Rationale: Significant progress has revealed transcriptional inputs that underlie regulation of artery and vein endothelial cell fates. However, little is known concerning genome-wide regulation of this process. Therefore, such studies are warranted to address this gap. Objective: To identify and characterize artery- and vein-specific endothelial enhancers in the human genome, thereby gaining insights into mechanisms by which blood vessel identity is regulated. Methods and Results: Using chromatin immunoprecipitation and deep sequencing for markers of active chromatin in human arterial and venous endothelial cells, we identified several thousand artery- and vein-specific regulatory elements. Computational analysis revealed that NR2F2 (nuclear receptor subfamily 2, group F, member 2) sites were overrepresented in vein-specific enhancers, suggesting a direct role in promoting vein identity. Subsequent integration of chromatin immunoprecipitation and deep sequencing data sets with RNA sequencing revealed that NR2F2 regulated 3 distinct aspects related to arteriovenous identity. First, consistent with previous genetic observations, NR2F2 directly activated enhancer elements flanking cell cycle genes to drive their expression. Second, NR2F2 was essential to directly activate vein-specific enhancers and their associated genes. Our genomic approach further revealed that NR2F2 acts with ERG (ETS-related gene) at many of these sites to drive vein-specific gene expression. Finally, NR2F2 directly repressed only a small number of artery enhancers in venous cells to prevent their activation, including a distal element upstream of the artery-specific transcription factor, HEY2 (hes related family bHLH transcription factor with YRPW motif 2). In arterial endothelial cells, this enhancer was normally bound by ERG, which was also required for arterial HEY2 expression. By contrast, in venous endothelial cells, NR2F2 was bound to this site, together with ERG, and prevented its activation. Conclusions: By leveraging a genome-wide approach, we revealed mechanistic insights into how NR2F2 functions in multiple roles to maintain venous identity. Importantly, characterization of its role at a crucial artery enhancer upstream of HEY2 established a novel mechanism by which artery-specific expression can be achieved.


2014 ◽  
Vol 395 (11) ◽  
pp. 1265-1274 ◽  
Author(s):  
Boet van Riel ◽  
Frank Rosenbauer

Abstract Purine-rich box1 (PU.1) is a transcription factor that not only has a key role in the development of most hematopoietic cell lineages but also in the suppression of leukemia. To exert these functions, PU.1 can cross-talk with multiple different proteins by forming complexes in order to activate or repress transcription. Among its protein partners are chromatin remodelers, DNA methyltransferases, and a number of other transcription factors with important roles in hematopoiesis. While a great deal of knowledge has been acquired about PU.1 function over the years, it was the development of novel genome-wide technologies, which boosted our understanding of how PU.1 acts on the chromatin to drive its repertoire of target genes. This review summarizes current knowledge and ideas of molecular mechanisms by which PU.1 controls hematopoiesis and suppresses leukemia.


Author(s):  
Han Liu ◽  
Jingyue Xu ◽  
Yu Lan ◽  
Hee-Woong Lim ◽  
Rulang Jiang

Proper development of tendons is crucial for the integration and function of the musculoskeletal system. Currently little is known about the molecular mechanisms controlling tendon development and tendon cell differentiation. The transcription factor Scleraxis (Scx) is expressed throughout tendon development and plays essential roles in both embryonic tendon development and adult tendon healing, but few direct target genes of Scx in tendon development have been reported and genome-wide identification of Scx direct target genes in vivo has been lacking. In this study, we have generated a ScxFlag knockin mouse strain, which produces fully functional endogenous Scx proteins containing a 2xFLAG epitope tag at the carboxy terminus. We mapped the genome-wide Scx binding sites in the developing limb tendon tissues, identifying 12,097 high quality Scx regulatory cis-elements in-around 7,520 genes. Comparative analysis with previously reported embryonic tendon cell RNA-seq data identified 490 candidate Scx direct target genes in early tendon development. Furthermore, we characterized a new Scx gene-knockout mouse line and performed whole transcriptome RNA sequencing analysis of E15.5 forelimb tendon cells from Scx–/– embryos and control littermates, identifying 68 genes whose expression in the developing tendon tissues significantly depended on Scx function. Combined analysis of the ChIP-seq and RNA-seq data yielded 32 direct target genes that required Scx for activation and an additional 17 target genes whose expression was suppressed by Scx during early tendon development. We further analyzed and validated Scx-dependent tendon-specific expression patterns of a subset of the target genes, including Fmod, Kera, Htra3, Ssc5d, Tnmd, and Zfp185, by in situ hybridization and real-time quantitative polymerase chain reaction assays. These results provide novel insights into the molecular mechanisms mediating Scx function in tendon development and homeostasis. The ChIP-seq and RNA-seq data provide a rich resource for aiding design of further studies of the mechanisms regulating tendon cell differentiation and tendon tissue regeneration. The ScxFlag mice provide a valuable new tool for unraveling the molecular mechanisms involving Scx in the protein interaction and gene-regulatory networks underlying many developmental and disease processes.


2012 ◽  
Vol 26 (8) ◽  
pp. 1428-1442 ◽  
Author(s):  
Cory A. Rubel ◽  
Rainer B. Lanz ◽  
Ramakrishna Kommagani ◽  
Heather L. Franco ◽  
John P. Lydon ◽  
...  

Progesterone (P4) signaling through its nuclear transcription factor, the progesterone receptor (PR), is essential for normal uterine function. Although deregulation of PR-mediated signaling is known to underscore uterine dysfunction and a number of endometrial pathologies, the early molecular mechanisms of this deregulation are unclear. To address this issue, we have defined the genome-wide PR cistrome in the murine uterus using chromatin immunoprecipitation (ChIP) followed by massively parallel sequencing (ChIP-seq). In uteri of ovariectomized mice, we identified 6367 PR-binding sites in the absence of P4 ligand; however, this number increased at nearly 3-fold (18,432) after acute P4 exposure. Sequence analysis revealed that approximately 73% of these binding sites contain a progesterone response element or a half-site motif recognized by the PR. Many previously identified P4 target genes known to regulate uterine function were found to contain PR-binding sites, confirming the validity of our methodology. Interestingly, when the ChIP-seq data were coupled with our microarray expression data, we identified a novel regulatory role for uterine P4 in circadian rhythm gene expression, thereby uncovering a hitherto unexpected new circadian biology for P4 in this tissue. Further mining of the ChIP-seq data revealed Sox17 as a direct transcriptional PR target gene in the uterus. As a member of the Sox transcription factor family, Sox17 represents a potentially novel mediator of PR action in the murine uterus. Collectively, our first line of analysis of the uterine PR cistrome provides the first insights into the early molecular mechanisms that underpin normal uterine responsiveness to acute P4 exposure. Future analysis promises to reveal the PR interactome and, in turn, potential therapeutic targets for the diagnosis and/or treatment of endometrial dysfunction.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rajni Parmar ◽  
Romit Seth ◽  
Ram Kumar Sharma

AbstractTea, being one of the most popular beverages requires large set of molecular markers for genetic improvement of quality, yield and stress tolerance. Identification of functionally relevant microsatellite or simple sequence repeat (SSR) marker resources from regulatory “Transcription factor (TF) genes” can be potential targets to expedite molecular breeding efforts. In current study, 2776 transcripts encoding TFs harbouring 3687 SSR loci yielding 1843 flanking markers were identified from traits specific transcriptome resource of 20 popular tea cultivars. Of these, 689 functionally relevant SSR markers were successfully validated and assigned to 15 chromosomes (Chr) of CSS genome. Interestingly, 589 polymorphic markers including 403 core-set of TF-SSR markers amplified 2864 alleles in key TF families (bHLH, WRKY, MYB-related, C2H2, ERF, C3H, NAC, FAR1, MYB and G2-like). Their significant network interactions with key genes corresponding to aroma, quality and stress tolerance suggests their potential implications in traits dissection. Furthermore, single amino acid repeat reiteration in CDS revealed presence of favoured and hydrophobic amino acids. Successful deployment of markers for genetic diversity characterization of 135 popular tea cultivars and segregation in bi-parental population suggests their wider utility in high-throughput genotyping studies in tea.


2004 ◽  
Vol 101 (28) ◽  
pp. 10458-10463 ◽  
Author(s):  
A. W. Bruce ◽  
I. J. Donaldson ◽  
I. C. Wood ◽  
S. A. Yerbury ◽  
M. I. Sadowski ◽  
...  

2015 ◽  
Vol 35 (6) ◽  
pp. 1014-1025 ◽  
Author(s):  
Arvind Shakya ◽  
Catherine Callister ◽  
Alon Goren ◽  
Nir Yosef ◽  
Neha Garg ◽  
...  

The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT ( fa cilitates c hromatin t ransactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.


2018 ◽  
Vol 61 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Hongwei Xun ◽  
Zhibing Zhang ◽  
Yunxiao Zhou ◽  
Xueyan Qian ◽  
Yingshan Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document