scholarly journals Parameter estimation and identifiability in a neural population model for electro-cortical activity

2018 ◽  
Author(s):  
Agus Hartoyo ◽  
Peter J. Cadusch ◽  
David T. J. Liley ◽  
Damien G. Hicks

AbstractElectroencephalography (EEG) provides a non-invasive measure of brain electrical activity. Neural population models, where large numbers of interacting neurons are considered collectively as a macroscopic system, have long been used to understand features in EEG signals. By tuning dozens of input parameters describing the excitatory and inhibitory neuron populations, these models can reproduce prominent features of the EEG such as the alpha-rhythm. However, the inverse problem, of directly estimating the parameters from fits to EEG data, remains unsolved. Solving this multi-parameter non-linear fitting problem will potentially provide a real-time method for characterizing average neuronal properties in human subjects. Here we perform unbiased fits of a 22-parameter neural population model to EEG data from 82 individuals, using both particle swarm optimization and Markov chain Monte Carlo sampling. We estimate how much is learned about individual parameters by computing Kullback-Leibler divergences between posterior and prior distributions for each parameter. Results indicate that only a single parameter, that determining the dynamics of inhibition, is directly identifiable, while other parameters have large, though correlated, uncertainties. We show that the eigenvalues of the Fisher information matrix are roughly uniformly spaced over a log scale, indicating that the model is sloppy, like many of the regulatory network models in systems biology. These eigenvalues indicate that the system can be modeled with a low effective dimensionality, with inhibition being prominent in driving system behavior.Author summaryElectroencephalography (EEG), where electrodes are used to measure electric potential on the outside of the scalp, provides a simple, non-invasive way to study brain activity. Physiological interpretation of features in EEG signals has often involved use of collective models of neural populations. These neural population models have dozens of input parameters to describe the properties of inhibitory and excitatory neurons. Being able to estimate these parameters by direct fits to EEG data holds the promise of providing a real-time non-invasive method of inferring neuronal properties in different individuals. However, it has long been impossible to fit these nonlinear, multi-parameter models effectively. Here we describe fits of a 22-parameter neural population model to EEG spectra from 82 different subjects, all exhibiting alpha-oscillations. We show how only one parameter, that describing inhibitory dynamics, is constrained by the data, although all parameters are correlated. These results indicate that inhibition plays a central role in the generation and modulation of the alpha-rhythm in humans.

Author(s):  
Qiang Zhang ◽  
Peng Wang ◽  
Shanshan Li ◽  
Yonghao Jing

Since electroencephalogram (EEG) signals contain a variety of physiological and pathological information, they are widely used in medical diagnosis, brain machine interface and other fields. The existing EEG apparatus are not perfect due to big size, high power consumption and using cables to transmit data. In this paper, a portable real-time EEG signal acquisition and tele-medicine system is developed in order to improve performance of EEG apparatus. The weak EEG signals are induced to the pre-processing circuits via a noninvasive method with bipolar leads. After multi-level amplifying and filtering, these signals are transmitted to DSP (TMS320C5509) to conduct digital filtering. Then, the EEG signals are displayed on the LCD screen and stored in the SD card so that they can be uploaded to the server through the internet. The server employs SQL Server database to manage patients’ information and to store data in disk. Doctors can download, look up and analyze patients’ EEG data using the doctor client. Experimental results demonstrate that the system can acquire weak EEG signals in real time, display the processed results, save data and carry out tele-medicine. The system can meet the requirement of the EEG signals’ quality, and are easy to use and carry.


2020 ◽  
Author(s):  
Agus Hartoyo ◽  
Peter J. Cadusch ◽  
David T. J. Liley ◽  
Damien G. Hicks

AbstractAlpha blocking, a phenomenon where the alpha rhythm is reduced by attention to a visual, auditory, tactile or cognitive stimulus, is one of the most prominent features of human electroencephalography (EEG) signals. Here we identify a simple physiological mechanism by which opening of the eyes causes attenuation of the alpha rhythm. We fit a neural population model to EEG spectra from 82 subjects, each showing different degrees of alpha blocking upon opening of their eyes. Although it is notoriously difficult to estimate parameters from fitting such models, we show that, by regularizing the differences in parameter estimates between eyes-closed and eyes-open states, we can reduce the uncertainties in these differences without significantly compromising fit quality. From this emerges a parsimonious explanation for the spectral changes between states: Just a single parameter, pei, corresponding to the strength of a tonic, excitatory input to the inhibitory population, is sufficient to explain the reduction in alpha rhythm upon opening of the eyes. When comparing parameter estimates across different subjects we find that the inferred differential change in pei for each subject increases monotonically with the degree of alpha blocking observed. In contrast, other parameters show weak or negligible differential changes that do not scale with the degree of alpha attenuation in each subject. Thus most of the variation in alpha blocking across subjects can be attributed to the strength of a tonic afferent signal to the inhibitory cortical population.Author summaryOne of the most striking features of the human electroencephalogram (EEG) is the presence of neural oscillations in the range of 8-13 Hz. It is well known that attenuation of these alpha oscillations, a process known as alpha blocking, arises from opening of the eyes, though the cause has remained obscure. In this study we infer the mechanism underlying alpha blocking by fitting a neural population model to EEG spectra from 82 different individuals. Although such models have long held the promise of being able to relate macroscopic recordings of brain activity to microscopic neural parameters, their utility has been limited by the difficulty of inferring these parameters from fits to data. Our approach is to fit both eyes-open and eyes-closed EEG spectra together, minimizing the number of parameter changes required to transition from one spectrum to the other. Surprisingly, we find that there is just one parameter, the external input to the inhibitory neurons in cortex, that is responsible for attenuating the alpha oscillations. We demonstrate how the strength of this inhibitory input scales monotonically with the degree of alpha blocking observed over all 82 subjects.


2017 ◽  
Author(s):  
Sina Miran ◽  
Sahar Akram ◽  
Alireza Sheikhattar ◽  
Jonathan Z. Simon ◽  
Tao Zhang ◽  
...  

AbstractHumans are able to identify and track a target speaker amid a cacophony of acoustic interference, which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). These procedures operate in an offline fashion, i.e., require the entire duration of the experiment and multiple trials to provide robust results. Therefore, they cannot be used in emerging applications such as smart hearing aid devices, where a single trial must be used in real-time to decode the attentional state. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: 1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, 2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and 3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and reliable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurate as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4269
Author(s):  
Yoon-A Choi ◽  
Se-Jin Park ◽  
Jong-Arm Jun ◽  
Cheol-Sig Pyo ◽  
Kang-Hee Cho ◽  
...  

The emergence of an aging society is inevitable due to the continued increases in life expectancy and decreases in birth rate. These social changes require new smart healthcare services for use in daily life, and covid-19 has also led to a contactless trend necessitating more non-face-to-face health services. Due to the improvements that have been achieved in healthcare technologies, an increasing number of studies have attempted to predict and analyze certain diseases in advance. Research on stroke diseases is actively underway, particularly with the aging population. Stroke, which is fatal to the elderly, is a disease that requires continuous medical observation and monitoring, as its recurrence rate and mortality rate are very high. Most studies examining stroke disease to date have used MRI or CT images for simple classification. This clinical approach (imaging) is expensive and time-consuming while requiring bulky equipment. Recently, there has been increasing interest in using non-invasive measurable EEGs to compensate for these shortcomings. However, the prediction algorithms and processing procedures are both time-consuming because the raw data needs to be separated before the specific attributes can be obtained. Therefore, in this paper, we propose a new methodology that allows for the immediate application of deep learning models on raw EEG data without using the frequency properties of EEG. This proposed deep learning-based stroke disease prediction model was developed and trained with data collected from real-time EEG sensors. We implemented and compared different deep-learning models (LSTM, Bidirectional LSTM, CNN-LSTM, and CNN-Bidirectional LSTM) that are specialized in time series data classification and prediction. The experimental results confirmed that the raw EEG data, when wielded by the CNN-bidirectional LSTM model, can predict stroke with 94.0% accuracy with low FPR (6.0%) and FNR (5.7%), thus showing high confidence in our system. These experimental results demonstrate the feasibility of non-invasive methods that can easily measure brain waves alone to predict and monitor stroke diseases in real time during daily life. These findings are expected to lead to significant improvements for early stroke detection with reduced cost and discomfort compared to other measuring techniques.


2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Sign in / Sign up

Export Citation Format

Share Document