scholarly journals The two chemotaxis inCaulobacter crescentusoperons play different roles in chemotaxis and biofilm regulation

2019 ◽  
Author(s):  
Cécile Berne ◽  
Yves V. Brun

ABSTRACTThe holdfast polysaccharide adhesin is crucial for irreversible cell adhesion and biofilm formation inCaulobacter crescentus. Holdfast production is tightly controlled via developmental regulators, and environmental and physical signals. Here we identified a novel mechanism of holdfast production regulation that involves chemotaxis proteins. We characterized the two identified chemotaxis operons ofC. crescentusand showed that only the previously characterized, major operon is involved in chemotactic response towards different carbon sources. However, both chemotaxis operons encoded in theC. crescentusgenome play a role in biofilm formation and holdfast production, by regulating the expression ofhfiA, the gene encoding the holdfast inhibitor HfiA. We show that CheA and CheB proteins act in an antagonistic manner: while the two CheA proteins negatively regulatehfiAexpression, the CheB proteins are positive regulators, thus providing a modulation of holdfast synthesis and surface attachment.IMPORTANCEChemosensory pathways are major signal transduction mechanisms in bacteria. These systems are involved in chemotaxis and other cell responses to environment conditions, such as production of adhesins that enable irreversible adhesion to a surface and surface colonization. TheC. crescentusgenome encodes two complete chemotaxis operons. Here we characterized the second, novel chemotaxis-like operon. While only the major chemotaxis operon is involved in chemotaxis, both chemotaxis systems modulateC. crescentusadhesion by controlling expression of the holdfast synthesis inhibitor, HfiA. Thus, we identified a new level in holdfast regulation, providing new insights into the control of adhesin production that leads to the formation of biofilms.

2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Cécile Berne ◽  
Yves V. Brun

ABSTRACTThe holdfast polysaccharide adhesin is crucial for irreversible cell adhesion and biofilm formation inCaulobacter crescentus. Holdfast production is tightly controlled via developmental regulators, as well as via environmental and physical signals. Here, we identify a novel mode of regulation of holdfast synthesis that involves chemotaxis proteins. We characterized the two identified chemotaxis clusters ofC. crescentusand showed that only the previously characterized major cluster is involved in the chemotactic response toward different carbon sources. However, both chemotaxis clusters encoded in theC. crescentusgenome play a role in biofilm formation and holdfast production by regulating the expression ofhfiA, the gene encoding the holdfast inhibitor HfiA. We show that CheA and CheB proteins act in an antagonistic manner, as follows: while the two CheA proteins negatively regulatehfiAexpression, the CheB proteins are positive regulators, thus providing a modulation of holdfast synthesis and surface attachment.IMPORTANCEChemosensory systems constitute major signal transduction pathways in bacteria. These systems are involved in chemotaxis and other cell responses to environment conditions, such as the production of adhesins to enable irreversible adhesion to a surface and surface colonization. TheC. crescentusgenome encodes two complete chemotaxis clusters. Here, we characterized the second novel chemotaxis-like cluster. While only the major chemotaxis cluster is involved in chemotaxis, both chemotaxis systems modulateC. crescentusadhesion by controlling expression of the holdfast synthesis inhibitor HfiA. Here, we identify a new level in holdfast regulation, providing new insights into the control of adhesin production that leads to the formation of biofilms in response to the environment.


2019 ◽  
Author(s):  
Luca Del Medico ◽  
Dario Cerletti ◽  
Matthias Christen ◽  
Beat Christen

Understanding how bacteria colonize surfaces and regulate cell cycle progression in response to cellular adhesion is of fundamental importance. Here, we used transposon sequencing in conjunction with FRET microscopy to uncover the molecular mechanism how surface sensing drives cell cycle initiation in Caulobacter crescentus. We identified the type IV pilin protein PilA as the primary signaling input that couples surface contact to cell cycle initiation via the second messenger c-di-GMP. Upon retraction of pili filaments, the monomeric pilin reservoir in the inner membrane is sensed by the 17 amino-acid transmembrane helix of PilA to activate the PleC-PleD two component signaling system, increase cellular c-di-GMP levels and signal the onset of the cell cycle. We termed the PilA signaling sequence CIP for cell cycle initiating pilin peptide. Addition of the chemically synthesized CIP peptide initiates cell cycle progression and simultaneously inhibits surface attachment. The broad conservation of the type IV pili and their importance in pathogens for host colonization suggests that CIP peptide mimetics offer new strategies to inhibit surface-sensing, prevent biofilm formation and control persistent infections.Significance StatementPili are hair-like appendages found on the surface of many bacteria to promote adhesion. Here, we provide systems-level findings on a molecular signal transduction pathway that interlinks surface sensing with cell cycle initiation. We propose that surface attachment induces depolymerization of pili filaments. The concomitant increase in pilin sub-units within the inner membrane function as a stimulus to activate the second messenger c-di-GMP and trigger cell cycle initiation. Further-more, we show that the provision of a 17 amino acid synthetic peptide corresponding to the membrane portion of the pilin sub-unit mimics surface sensing, activates cell cycle initiation and inhibits surface attachment. Thus, synthetic peptide mimetics of pilin may represent new chemotypes to control biofilm formation and treat bacterial infections.


2020 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Saskia Rughöft ◽  
Nico Jehmlich ◽  
Tony Gutierrez ◽  
Sara Kleindienst

The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1521-1531 ◽  
Author(s):  
Magne Østerås ◽  
Shelley A P O'Brien ◽  
Turlough M Finan

Abstract The enzyme phosphoenolpyruvate carboxykinase (Pck) catalyzes the first step in the gluconeogenic pathway in most organisms. We are examining the genetic regulation of the gene encoding Pck, pckA, in Rhizobium (now Sinorhizobium) meliloti. This bacterium forms N2-fixing root nodules on alfalfa, and the major energy sources supplied to the bacteria within these nodules are C4-dicarboxylic acids such as malate and succinate. R. meliloti cells growing in glucose minimal medium show very low pckA expression whereas addition of succinate to this medium results in a rapid induction of pckA transcription. We identified spontaneous mutations (rpk) that alter the regulation of pckA expression such that pckA is expressed in media containing the non-inducing carbon sources lactose and glucose. Genetic and phenotypic analysis allowed us to differentiate at least four rpk mutant classes that map to different locations on the R. meliloti chromosome. The wild-type locus corresponding to one of these rpk loci was cloned by complementation, and two Tn5 insertions within the insert DNA that no longer complemented the rpk mutation were identified. The nucleotide sequence of this region revealed that both Tn5 insertions lay within a gene encoding a protein homologous to the Ga1R/LacI family of transcriptional regulators that are involved in metabolism.


2002 ◽  
Vol 46 (6) ◽  
pp. 1823-1830 ◽  
Author(s):  
Jean-Denis Docquier ◽  
Fabrizio Pantanella ◽  
Francesco Giuliani ◽  
Maria Cristina Thaller ◽  
Gianfranco Amicosante ◽  
...  

ABSTRACT The sequenced chromosome of Caulobacter crescentus CB15 encodes a hypothetical protein that exhibits significant similarity (30 to 35% identical residues) to metallo-β-lactamases of subclass B3. An allelic variant of this gene (divergent by 3% of its nucleotides) was cloned in Escherichia coli from C. crescentus type strain DSM4727. Expression studies confirmed the metallo-β-lactamase activity of its product, CAU-1. The enzyme produced in E. coli was purified by two ion-exchange chromatography steps. CAU-1 contains a 29-kDa polypeptide with an alkaline isoelectric pH (>9), and unlike the L1 enzyme of Stenotrophomonas maltophilia, the native form is monomeric. Kinetic analysis revealed a preferential activity toward penicillins, carbapenems, and narrow-spectrum cephalosporins, while oxyimino cephalosporins were poorly or not hydrolyzed. Affinities for the various β-lactams were poor overall (Km values were always >100 μM and often >400 μM). The interaction with divalent ion chelators appeared to occur by a mechanism similar to that prevailing in other members of subclass B3. In C. crescentus, the CAU-1 enzyme is produced independently of β-lactam exposure and, interestingly, the bla CAU determinant is bracketed by three other genes, including two genes encoding enzymes involved in methionine biosynthesis and a gene encoding a putative transcriptional regulator, in an operon-like structure. The CAU-1 enzyme is the first example of a metallo-β-lactamase in a member of the α subdivision of the class Proteobacteria.


2020 ◽  
Author(s):  
Shakya P. Kurukulasuriya ◽  
Mo H. Patterson ◽  
Janet E. Hill

AbstractCell wall proteins with sialidase activity are involved in carbohydrate assimilation, adhesion to mucosal surfaces, and biofilm formation. Gardnerella spp. inhabit the human vaginal microbiome and encode up to three sialidase enzymes, two of which are suspected to be cell wall associated. Here we demonstrate that the gene encoding extracellular sialidase NanH3 is found almost exclusively in G. piotii and closely related Gardnerella genome sp. 3, and its presence correlates with sialidase positive phenotype in a collection of 112 Gardnerella isolates. The nanH3 gene sequence includes a homopolymeric repeat of cytosines that varies in length within cell populations, indicating that this gene is subject to slipped-strand mispairing, a mechanisms of phase variation in bacteria. Variation in the length of the homopolymer sequence results in encoding of either the full length sialidase protein or truncated peptides lacking the sialidase domain due to introduction of reading-frame shifts and premature stop codons. Phase variation in NanH3 may be involved in immune evasion or modulation of adhesion to host epithelial cells, and formation of biofilms characteristic of the vaginal dysbiosis known as bacterial vaginosis.


Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 880-890 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Toshiyuki Ishizuka ◽  
Shuhei Hotta ◽  
Michiko Aoki ◽  
Tomohiro Shimada ◽  
...  

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


2015 ◽  
Author(s):  
Shiro Yoshioka ◽  
Peter D Newell

Pseudomonas fluorescens Pf0-1 is one of the model organisms for biofilm research. Our previous transposon mutagenesis study suggested a requirement for the de novo purine nucleotide biosynthesis pathway for biofilm formation by this organism. This study was performed to verify that observation and investigate the basis for the defects in biofilm formation shown by purine biosynthesis mutants. Constructing deletion mutations in 8 genes in this pathway, we found that they all showed reductions in biofilm formation that could be partly or completely restored by nucleotide supplementation or genetic complementation. We demonstrated that, despite a reduction in biofilm formation, more viable mutant cells were recovered from the surface-attached population than from the planktonic phase under conditions of purine deprivation. Analyses using scanning electron microscopy revealed that the surface-attached mutant cells were 25~30% shorter in length than WT, which partly explains the reduced biomass in the mutant biofilms. The laser diffraction particle analyses confirmed this finding, and further indicated that the WT biofilm cells were smaller than their planktonic counterparts. The defects in biofilm formation and reductions in cell size shown by the mutants were fully recovered upon adenine or hypoxanthine supplementation, indicating that the purine shortages caused reductions in cell size. Our results are consistent with surface attachment serving as a survival strategy during nutrient deprivation, and indicate that changes in the cell size may be a natural response of P. fluorescens to growth on a surface. Finally, cell sizes in WT biofilms became slightly smaller in the presence of exogenous adenine than in its absence. Our findings suggest that purine nucleotides or related metabolites may influence the regulation of cell size in this bacterium.


2015 ◽  
Vol 175 (8) ◽  
pp. 3915-3929 ◽  
Author(s):  
Luciana Graciano ◽  
Juliana Moço Corrêa ◽  
Fabíola Giovanna Nesello Vieira ◽  
Adilson Bosetto ◽  
Eduardo Alexandre Loth ◽  
...  

2006 ◽  
Vol 188 (6) ◽  
pp. 2233-2243 ◽  
Author(s):  
Jonathan Frye ◽  
Joyce E. Karlinsey ◽  
Heather R. Felise ◽  
Bruz Marzolf ◽  
Naeem Dowidar ◽  
...  

ABSTRACT RNA levels of flagellar genes in eight different genetic backgrounds were compared to that of the wild type by DNA microarray analysis. Cluster analysis identified new, potential flagellar genes, three putative methyl-accepting chemotaxis proteins, STM3138 (McpA), STM3152 (McpB), and STM3216(McpC), and a CheV homolog, STM2314, in Salmonella, that are not found in Escherichia coli. Isolation and characterization of Mud-lac insertions in cheV, mcpB, mcpC, and the previously uncharacterized aer locus of S. enterica serovar Typhimurium revealed them to be controlled by σ28-dependent flagellar class 3 promoters. In addition, the srfABC operon previously isolated as an SsrB-regulated operon clustered with the flagellar class 2 operon and was determined to be under FlhDC control. The previously unclassified fliB gene, encoding flagellin methylase, clustered as a class 2 gene, which was verified using reporter fusions, and the fliB transcriptional start site was identified by primer extension analysis. RNA levels of all flagellar genes were elevated in flgM or fliT null strains. RNA levels of class 3 flagellar genes were elevated in a fliS null strain, while deletion of the fliY, fliZ, or flk gene did not affect flagellar RNA levels relative to those of the wild type. The cafA (RNase G) and yhjH genes clustered with flagellar class 3 transcribed genes. Null alleles in cheV, mcpA, mcpB, mcpC, and srfB did not affect motility, while deletion of yhjH did result in reduced motility compared to that of the wild type.


Sign in / Sign up

Export Citation Format

Share Document