scholarly journals Early Life Adversity, but not suicide, is associated with less prefrontal cortex gray matter in adulthood

2019 ◽  
Author(s):  
Mark D. Underwood ◽  
Mihran J. Bakalian ◽  
Teresa Escobar ◽  
Suham Kassir ◽  
J. John Mann ◽  
...  

AbstractBackgroundSuicide and major depression (MDD) are more prevalent in individuals reporting early life adversity (ELA). Prefrontal cortex volume is reduced by stress acutely and progressively in vivo, and changes in neuron and glia density are reported in depressed suicide decedents. We previously found reduced levels of the neurotrophic factor BDNF in suicide decedents and with ELA, and in the present study we sought to determine whether cortex thickness, neuron density or glia density in the dorsolateral prefrontal (BA9) and anterior cingulate (BA24) cortex are associated with ELA or suicide.MethodsA total of 52 brains, constituting 13 quadruplets of nonpsychiatric nonsuicide controls and MDD suicide decedents with and without ELA (n=13/group), all with psychological autopsy, were matched for age, sex and postmortem interval. Brains were collected at autopsy and frozen and blocks containing BA9 and BA24 were later dissected, post-fixed and sectioned. Sections were immunostained for NeuN to label neurons and counterstained with thionin to stain glial cell nuclei. Cortex thickness, neuron and glial density and neuron volume were measured by stereology.ResultsCortical thickness was 6% less with an ELA history in BA9 and 12% less in BA24 (p<0.05), but not in depressed suicide decedents in either BA9 or BA24. Neuron density was not different in ELA or in suicide decedents, but glial density was 17% greater with ELA history in BA9 and 15% greater in BA24, but not in suicides. Neuron volume was not different with ELA or suicide.DiscussionReported ELA, but not the stress associated with suicide, is associated with thinner prefrontal cortex and greater glia density in adulthood. ELA may alter normal neurodevelopment and contribute to suicide risk.

2017 ◽  
Author(s):  
Mariam M. Youssef ◽  
Mark D. Underwood ◽  
Yung-Yu Huang ◽  
Shu-chi Hsiung ◽  
Yan Liu ◽  
...  

ABSTRACTBrain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of major depressive disorder (MDD) and suicide. Both are partly caused by early life adversity (ELA) and ELA reduces both BDNF protein and gene expression. This study examines the association of BDNF Val66Met polymorphism and brain BDNF levels with depression and suicide. We hypothesized that both MDD and ELA would be associated with the Met allele and lower brain BDNF levels. Such an association would be consistent with low BDNF mediating the effect of ELA on adulthood suicide and MDD. BDNF Val66Met polymorphism was genotyped in postmortem brains of 37 suicide decedents and 53 non-suicides. Additionally, BDNF protein levels were determined by Western blot in dorsolateral prefrontal cortex (Brodmann area 9; BA9), anterior cingulate cortex (ACC; BA24), caudal brainstem and rostral brainstem. The relationships between these measures and major depression, death by suicide and reported childhood adversity were examined. Depressed subjects had an excess of the Met allele and lower BDNF levels in ACC and caudal brainstem compared with non-depressed subjects. No effect of history of suicide death or early life adversity was observed with genotype, but lower BDNF levels in ACC were found in subjects who had been exposed to early life adversity and/or died by suicide compared to nonsuicide decedents and no reported childhood adversity. This study provides further evidence for low BDNF in major depression related to the BDNF met risk allele. Future studies should seek to determine how altered BDNF expression contributes to MDD and suicide.


2020 ◽  
Vol 23 (5) ◽  
pp. 311-318 ◽  
Author(s):  
Mark D Underwood ◽  
Mihran J Bakalian ◽  
Virginia L Johnson ◽  
Suham A Kassir ◽  
Steven P Ellis ◽  
...  

Abstract Background Glutamate is an excitatory neurotransmitter binding to 3 classes of receptors, including the N-methyl, D-aspartate (NMDA) receptor. NMDA receptor binding is lower in major depression disorder and suicide. NMDA receptor blocking with ketamine can have antidepressant and anti-suicide effects. Early-life adversity (ELA) may cause glutamate-mediated excitotoxicity and is more common with major depression disorder and in suicide decedents. We sought to determine whether NMDA-receptor binding is altered with suicide and ELA. Methods A total 52 postmortem cases were organized as 13 quadruplets of suicide and non-suicide decedents matched for age, sex, and postmortem interval, with or without reported ELA (≤16 years). Tissue blocks containing dorsal prefrontal (BA8), dorsolateral prefrontal (BA9), or anterior cingulate (BA24) cortex were collected at autopsy. Psychiatrically healthy controls and suicide decedents underwent psychological autopsy to determine psychiatric diagnoses and details of childhood adversity. NMDA receptor binding was determined by quantitative autoradiography of [3H]MK-801 binding (displaced by unlabeled MK-801) in 20-µm-thick sections. Results [3H]MK-801 binding was not associated with suicide in BA8, BA9, or BA24. However, [3H]MK-801 binding with ELA was less in BA8, BA9, and BA24 independent of suicide (P &lt; .05). [3H]MK-801 binding was not associated with age or postmortem interval in any brain region or group. Conclusions Less NMDA receptor binding with ELA is consistent with the hypothesis that stress can cause excitotoxicity via excessive glutamate, causing either NMDA receptor downregulation or less receptor binding due to neuron loss consequent to the excitotoxicity.


2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


Author(s):  
Jong H. Yoon ◽  
Richard J. Maddock ◽  
Jeremy Laufer ◽  
Michael J. Minzenberg ◽  
Tara A. Niendam ◽  
...  

2015 ◽  
Vol 1 (4) ◽  
pp. 220-234 ◽  
Author(s):  
Peter M. Thompson ◽  
Dianne A. Cruz ◽  
Elizabeth A. Fucich ◽  
Dianna Y. Olukotun ◽  
Masami Takahashi ◽  
...  

Lupus ◽  
2019 ◽  
Vol 28 (14) ◽  
pp. 1678-1689 ◽  
Author(s):  
E Papadaki ◽  
E Kavroulakis ◽  
G Bertsias ◽  
A Fanouriakis ◽  
D Karageorgou ◽  
...  

The study examined the hypothesis that hypoperfusion in brain areas known to be involved in emotional disturbances in primary psychiatric disorders is also linked to emotional difficulties in systemic lupus erythematosus (SLE) and that these are not secondary to the physical and social burden incurred by the disease. Nineteen SLE patients without overt neuropsychiatric manifestations (non-NPSLE), 31 NPSLE patients, and 23 healthy controls were examined. Dynamic susceptibility contrast MRI was used and cerebral blood flow and cerebral blood volume values were estimated in six manually selected regions of interest of brain regions suspected to play a role in anxiety and depression (dorsolateral prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate cortex, hippocampi, caudate nuclei and putamen). NPSLE patients reported high rates of anxiety and depression symptomatology. Significantly reduced cerebral blood flow and cerebral blood volume values were detected in the NPSLE group compared to healthy controls in the dorsolateral prefrontal cortex and ventromedial prefrontal cortex, bilaterally. Within the NPSLE group, anxiety symptomatology was significantly associated with lower perfusion in frontostriatal regions and in the right anterior cingulate gyrus. Importantly, the latter associations appeared to be specific to anxiety symptoms, as they persisted after controlling for depression symptomatology and independent of the presence of visible lesions on conventional MRI. In conclusion, hypoperfusion in specific limbic and frontostriatal regions is associated with more severe anxiety symptoms in the context of widespread haemodynamic disturbances in NPSLE.


2020 ◽  
Vol 45 (9) ◽  
pp. 1438-1447
Author(s):  
Lara O. Franco ◽  
Mário J. Carvalho ◽  
Jéssica Costa ◽  
Pedro A. Ferreira ◽  
Joana R. Guedes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document