scholarly journals Competence ofCorynebacterium glutamicumas a host for the production of type I polyketides

2019 ◽  
Author(s):  
Nicolai Kallscheuer ◽  
Hirokazu Kage ◽  
Lars Milke ◽  
Markus Nett ◽  
Jan Marienhagen

AbstractType I polyketide synthases (PKSs) are large multi-domain proteins converting simple acyl-CoA thioesters such as acetyl-CoA and malonyl-CoA to a large diversity of biotechnologically interesting molecules. Such multi-step reaction cascades are of particular interest for applications in engineered microbial cell factories, as the introduction of a single protein with many enzymatic activities does not require balancing of several individual enzymatic activities. However, functional introduction of type I PKSs into heterologous hosts is very challenging as the large polypeptide chains often do not fold properly. In addition, PKS usually require post-translational activation by dedicated 4’-phosphopantetheinyl transferases (PPTases). Here, we introduce an engineeredCorynebacterium glutamicumstrain as a novel microbial cell factory for type I PKS-derived products. Suitability ofC. glutamicumfor polyketide synthesis could be demonstrated by the functional introduction of the 6-methylsalicylic acid synthase ChlB1 fromStreptomyces antibioticus. Challenges related to protein folding could be overcome by translation fusion of ChlB1Sato the C-terminus of the maltose-binding protein MalE fromEscherichia coli. Surprisingly, ChlB1Sawas also active in absence of a heterologous PPTase, which finally led to the discovery that the endogenous PPTase PptACgofC. glutamicumcan also activate ChlB1Sa. The best strain, engineered to provide increased levels of acetyl-CoA and malonyl-CoA, accumulated up to 41 mg/L (0.27 mM) 6-methylsalicylic acid within 48 h of cultivation. Further experiments showed that PptACgofC. glutamicumcan also activate nonribosomal peptide synthetases (NRPSs), renderingC. glutamicuma promising microbial cell factory for the production of several fine chemicals and medicinal drugs.

2021 ◽  
Author(s):  
Eline Postma ◽  
Else-Jasmijn Hassing ◽  
Venda Mangkusaputra ◽  
Jordi Geelhoed ◽  
Pilar de la Torre ◽  
...  

The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Chenyi Li ◽  
Xiaopeng Gao ◽  
Xiao Peng ◽  
Jinlin Li ◽  
Wenxin Bai ◽  
...  

Abstract Background In industrial fermentation, pH fluctuation resulted from microbial metabolism influences the strain performance and the final production. The common way to control pH is adding acid or alkali after probe detection, which is not a fine-tuned method and often leads to increased costs and complex downstream processing. Here, we constructed an intelligent pH-sensing and controlling genetic circuits called “Genetic pH Shooting (GPS)” to realize microbial self-regulation of pH. Results In order to achieve the self-regulation of pH, GPS circuits consisting of pH-sensing promoters and acid-/alkali-producing genes were designed and constructed. Designed pH-sensing promoters in the GPS can respond to high or low pHs and generate acidic or alkaline substances, achieving endogenously self-responsive pH adjustments. Base shooting circuit (BSC) and acid shooting circuit (ASC) were constructed and enabled better cell growth under alkaline or acidic conditions, respectively. Furthermore, the genetic circuits including GPS, BSC and ASC were applied to lycopene production with a higher yield without an artificial pH regulation compared with the control under pH values ranging from 5.0 to 9.0. In scale-up fermentations, the lycopene titer in the engineered strain harboring GPS was increased by 137.3% and ammonia usage decreased by 35.6%. Conclusions The pH self-regulation achieved through the GPS circuits is helpful to construct intelligent microbial cell factories and reduce the production costs, which would be much useful in industrial applications.


2017 ◽  
Vol 3 (5) ◽  
pp. 81 ◽  
Author(s):  
Ingy I. Abdallah ◽  
Wim J. Quax

<p>Terpenoids represent the largest class of natural products with a diverse array of structures and functions. Many terpenoids have reported therapeutic properties such as antimicrobial, anti-inflammatory, immunomodulatory and chemotherapeutic properties making them of great interest in the medical field. Also, they are widely used in the flavors and fragrances industries, in addition to being a source of biofuels. Terpenoids suffer from low natural yields and complicated chemical synthesis, hence the need for a more sustainable production method. Metabolic engineering provide an excellent opportunity to construct microbial cell factories producing the desired terpenoids. The biosynthetic mevalonate and non-mevalonate pathways involved in the production of terpenoid precursors are fully characterized so exploring methods to improve their flux would be the first step in creating a successful cell factory. The complexity and diversity of terpenoid structures depends mainly on the action of the terpene synthases responsible for their synthesis. These enzymes are classified into different classes and gaining insight into their catalytic mechanism will be useful in designing approaches to improve terpenoid production. This review focuses on the biosynthesis and biodiversity of terpenoids, understanding the terpene synthase enzyme family involved in their synthesis and the engineering efforts to create microbial cell factories for terpenoid production.</p>


Author(s):  
Jianli Wang ◽  
Wenjian Ma ◽  
Yu Fang ◽  
Hailing Zhang ◽  
Hao Liang ◽  
...  

Poly-3-hydroxybutyrate (PHB) is an environmentally friendly polymer and can be produced in Escherichia coli cells after overexpressing the heterologous gene cluster phaCAB . The biosynthesis of outer membrane (OM) consumes lots of nutrients and influences cell morphology. Here we engineered OM by disrupting all gene clusters relevant to polysaccharide portion of LPS, colanic acid (CA), flagella or/and fimbria in E. coli W3110. All these disruptions benefited PHB production. Especially, disrupting all these OM components improved PHB content to 83.0 wt%, while the wild-type control produced only 1.5 wt% PHB. The improvement was mainly due to the LPS truncation to Kdo 2 -lipid A, which facilitated 82.0 wt% PHB with 25-fold larger cell volume; and disrupting CA facilitated 57.8 wt% PHB. In addition, disrupting LPS facilitated advantageous fermentation features including 69.1% less acetate, 550% higher percentage of autoaggregated cells among the total culture cells, 69.1% less biofilm and higher cellular broken ratio. Further detailed mechanism investigations showed that disrupting LPS caused global regulations on envelope and cellular metabolism: (i) sharply decrease of flagella, fimbria and secretions; (ii) more elastic cell; (iii) much more carbon flux towards acetyl-CoA and cofactors supply including NADP, NAD and ATP; (iv) decrease of byproduct acids but increase of γ-aminobutyric acid by activating σ E factor. Disrupting CA, flagella and fimbria also improved the levels of acetyl-CoA and cofactors. The results indicated that engineering OM is an effective strategy to enhance PHB production, and highlighted the applicability of OM engineering to increase microbial cell factory performance. Importance Understanding the detailed influence of OM on cell envelope and cellular metabolism is important for optimizing E. coli cell factory and many other microorganisms. This study revealed the applicability of remodeling OM to enhance PHB accumulation as representative inclusion bodies. The knowledge generated in this study provided insights concerning the influence and application of OM engineering, and gave essential references for producing other inclusion bodies or chemicals derived from acetyl-CoA or with the need of cofactor NADPH, NADH or ATP supply, and reducing byproduct acids. This study is promising to provide new ideas for the improvement of microbial cell factories.


2018 ◽  
Author(s):  
p Schäp ◽  
MJ Kwon ◽  
B Baumann ◽  
B Gutschmann ◽  
S Jung ◽  
...  

AbstractA significant challenge in our understanding of biological systems is the high number of genes with unknown function in many genomes. The fungal genus Aspergillus contains important pathogens of humans, model organisms, and microbial cell factories. Aspergillus niger is used to produce organic acids, proteins, and is a promising source of new bioactive secondary metabolites. Out of the 14,165 open reading frames predicted in the A. niger genome of only 2% have been experimentally verified and over 6,000 are hypothetical. Here we show that gene co-expression network analysis can be used to overcome this limitation. A meta-analysis of 155 transcriptomics experiments generated co-expression networks for 9,579 genes (∼65%) of the A. niger genome. By populating this dataset with over 1,200 gene functional experiments from the genus Aspergillus and performing gene ontology enrichment, we could infer biological processes for 9,263 of A. niger genes, including 2,970 hypothetical genes. Experimental validation of selected co-expression sub-networks uncovered four transcription factors involved in secondary metabolite synthesis, which were used to activate production of multiple natural products. This study constitutes a significant step towards systems-level understanding of A. niger, and the datasets can be used to fuel discoveries of model systems, fungal pathogens, and biotechnology.


2017 ◽  
Vol 44 ◽  
pp. 253-264 ◽  
Author(s):  
Abayomi Oluwanbe Johnson ◽  
Miriam Gonzalez-Villanueva ◽  
Lynn Wong ◽  
Alexander Steinbüchel ◽  
Kang Lan Tee ◽  
...  

2020 ◽  
Author(s):  
Aleksandr Illarionov ◽  
Petri-Jaan Lahtvee ◽  
Rahul Kumar

AbstractBiotechnology requires efficient microbial cell factories. The budding yeast Saccharomyces cerevisiae is an important cell factory but for a sustainable use of natural resources more diverse cellular attributes are essential. Here, we benchmarked non-conventional yeasts Kluyveromyces marxianus (KM) and Rhodotorula toruloides (RT) against the extensively characterized strains of S. cerevisiae, CEN.PK and W303. We developed a computational method for the characterization of cell/vacuole volumes and observed an inverse relationship between the maximal growth rate and the median cell volume that was responsive to monovalent cations. We found that the supplementation of certain K+ concentrations to CEN.PK cultures containing 1.0 M Na+ increased the specific growth rate by four-fold with a parabolic shift in the median cell/vacuole volumes. The impairment of ethanol and acetate utilization in CEN.PK, acetate in W303, at the higher K+/Na+ concentrations implied an interference in the metabolic pathways required for their consumption. In RT cultures, the supplementation of K+/Na+ induced a trade-off in glucose utilization but alleviated cellular aggregates formation where specified cationic concentrations increased the beta-carotene yield by 60% compared with the reference. Our comparative analysis of cell/vacuole volumes using exponential phase cultures showed that the median volumes decreased the most for KM and the least for RT in response to studied cations. Noteworthy for the implication in aging research using yeasts, the vacuole to cell volume ratio increased with the increase in cell volume for W303 and KM, but not for CEN.PK and RT.ImportanceFor designing efficient bioprocesses characterization of microbial cell factories in the relevant culture environment is important. The control of cell volume in response to salt stress is crucial for the productivity of microbial cell factories. We developed an open source computational method for the analysis of optical microscopy images that allowed us to quantify changes in cell/vacuole volumes in response to common salts in yeasts. Our study provides a framework for appreciating the role of cellular/organellar volumes in response to changing physiological environment. Our analysis showed that K+/Na+ interactions could be used for improving the cellular fitness of CEN.PK and increasing the productivity of beta-carotene in R. toruloides, which is a commercially important antioxidant and a valuable additive in foods.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianli Wang ◽  
Wenjian Ma ◽  
Xiaoyuan Wang

AbstractEscherichia coli is generally used as model bacteria to define microbial cell factories for many products and to investigate regulation mechanisms. E. coli exhibits phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae on the outer membrane which is a self-protective barrier and closely related to cellular morphology, growth, phenotypes and stress adaptation. However, these outer membrane associated molecules could also lead to potential contamination and insecurity for fermentation products and consume lots of nutrients and energy sources. Therefore, understanding critical insights of these membrane associated molecules is necessary for building better microbial producers. Here the biosynthesis, function, influences, and current membrane engineering applications of these outer membrane associated molecules were reviewed from the perspective of synthetic biology, and the potential and effective engineering strategies on the outer membrane to improve fermentation features for microbial cell factories were suggested.


Fuel ◽  
2021 ◽  
Vol 298 ◽  
pp. 120858
Author(s):  
Sana Malik ◽  
Ayesha Shahid ◽  
Chen-Guang Liu ◽  
Aqib Zafar Khan ◽  
Muhammad Zohaib Nawaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document