scholarly journals Precise Coordination of 3-dimensional Rotational Kinematics by Ventral Tegmental Area GABAergic Neurons

2019 ◽  
Author(s):  
Ryan N. Hughes ◽  
Glenn D.R. Watson ◽  
Elijah Petter ◽  
Namsoo Kim ◽  
Konstantin I. Bakhurin ◽  
...  

SummaryThe Ventral Tegmental Area (VTA) is a midbrain region implicated in a variety of motivated behaviors. However, the function of VTA GABAergic (Vgat+) neurons remains poorly understood. Here, using 3D motion capture, in vivo electrophysiology and calcium imaging, and optogenetics, we demonstrate a novel function of VTAVgat+ neurons. We found three distinct populations of neurons, each representing head angle about a principal axis of rotation: pitch, roll, and yaw. For each axis, opponent cell groups were found that increase firing when the head moves in one direction, and decrease firing in the opposite direction. Selective excitation and inhibition of VTAVgat+ neurons generate opposite rotational movements. The relationship between these neurons and head angle is degraded only at the time of reward consumption, at which point all head-angle related neuronal subpopulations show indistinguishable reward-related responses. Thus, VTAVgat+ neurons serve a critical role in the control of rotational kinematics while pursuing a moving target. This general-purpose steering function can guide animals toward desired spatial targets in any motivated behavior.

2021 ◽  
Vol 31 (9) ◽  
pp. 2037
Author(s):  
Ryan N. Hughes ◽  
Glenn D.R. Watson ◽  
Elijah A. Petter ◽  
Namsoo Kim ◽  
Konstantin I. Bakhurin ◽  
...  

Author(s):  
Hongsheng Wang ◽  
Wanpeng Cui ◽  
Wenbing Chen ◽  
Fang Liu ◽  
Zhaoqi Dong ◽  
...  

AbstractDopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.


2021 ◽  
Vol 226 (4) ◽  
pp. 1155-1167 ◽  
Author(s):  
Anne C. Trutti ◽  
Laura Fontanesi ◽  
Martijn J. Mulder ◽  
Pierre-Louis Bazin ◽  
Bernhard Hommel ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.


2018 ◽  
Vol 50 (3) ◽  
pp. 2146-2155 ◽  
Author(s):  
Lindsay Naef ◽  
Lauren Seabrook ◽  
Jeff Hsiao ◽  
Calvin Li ◽  
Stephanie L. Borgland

2019 ◽  
Vol 29 (19) ◽  
pp. 3244-3255.e4 ◽  
Author(s):  
Ryan N. Hughes ◽  
Glenn D.R. Watson ◽  
Elijah A. Petter ◽  
Namsoo Kim ◽  
Konstantin I. Bakhurin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document