scholarly journals Phylogeny, transposable element and sex chromosome evolution of the basal lineage of birds

2019 ◽  
Author(s):  
Zongji Wang ◽  
Jilin Zhang ◽  
Xiaoman Xu ◽  
Christopher Witt ◽  
Yuan Deng ◽  
...  

AbstractSex chromosomes of mammals and most birds are heteromorphic, while those of many paleognaths (ratites and tinamous) are inexplicably homomorphic. To dissect the mechanisms underlying the different tempo of sex chromosome evolution, we produced high-quality genomes of 12 paleognathous species, and reconstructed their phylogeny based on alignments of the non-coding sequences extending to nearly 40% of the genome. Our phylogenomic tree grouped the South American rheas and tinamous together, and supported the independent evolution of gigantism and loss of flight among ratites. The small-bodied tinamous have much higher rates of genome-wide substitutions and transposon turnovers. Yet majorities of both have retained exceptionally long recombining regions occupying over half of the entire sex chromosome, with the rest sex-linked regions diverging from each other at a much lower rate relative to neognathous birds. Each species exhibits a punctuated sequence divergence pattern between sex chromosomes termed ‘evolutionary strata’, because of stepwise suppression of recombination. We concluded that all paleognaths share one evolutionary stratum with all other birds, and convergently formed between one to three strata after their rapid speciation. Contrary to the classic notion, we provided clear evidence that the youngest stratum of some tinamous formed without chromosomal inversion. Intriguingly, some of the encompassing W-linked genes have upregulated their expression levels in ovary, probably due to the female-specific selection. We proposed here that the unique male-only parental care system of paleognaths has reduced the intensity of sexual selection, and contributed to these species’ low rates of sex chromosome evolution. We also provided novel insights into the evolution of W-linked genes at their early stages.

2017 ◽  
Author(s):  
Paris Veltsos ◽  
Kate E. Ridout ◽  
Melissa A. Toups ◽  
Santiago C. González-Martínez ◽  
Aline Muyle ◽  
...  

AbstractSuppressed recombination around a sex-determining locus allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. Both genetic mapping and exome resequencing of individuals across the species range independently identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about a third of the Y chromosome has ceased recombining, a region containing 568 transcripts and spanning 22.3 cM in the corresponding female map. Patterns of gene expression hint at the possible role of sexually antagonistic selection in having favored suppressed recombination. In total, the genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. There was limited evidence of Y-chromosome degeneration in terms of gene loss and pseudogenization, but sequence divergence between the X and Y copies of many sex-linked genes was higher than between M. annua and its dioecious sister species M. huetii with which it shares a sex-determining region. The Mendelian inheritance of sex in interspecific crosses, combined with the other observed pattern, suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining about one million years ago.Article summaryPlants that evolved separate sexes (dioecy) recently are ideal models for studying the early stages of sex-chromosome evolution. Here, we use karyological, whole genome and transcriptome data to characterize the homomorphic sex chromosomes of the annual dioecious plant Mercurialis annua. Our analysis reveals many typical hallmarks of dioecy and sex-chromosome evolution, including sex-biased gene expression and high X/Y sequence divergence, yet few premature stop codons in Y-linked genes and very little outright gene loss, despite 1/3 of the sex chromosome having ceased recombination in males. Our results confirm that the M. annua species complex is a fertile system for probing early stages in the evolution of sex chromosomes.


2017 ◽  
Vol 284 (1854) ◽  
pp. 20162806 ◽  
Author(s):  
Jessica K. Abbott ◽  
Anna K. Nordén ◽  
Bengt Hansson

Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence.


2018 ◽  
Author(s):  
Thibault Leroy ◽  
Yoann Anselmetti ◽  
Marie-Ka Tilak ◽  
Sèverine Bérard ◽  
Laura Csukonyi ◽  
...  

ABSTRACTChromosomal organization is relatively stable among avian species, especially with regards to sex chromosomes. Members of the large Sylvioidea clade however have a pair of neo-sex chromosomes which is unique to this clade and originate from a parallel translocation of a region of the ancestral 4A chromosome on both W and Z chromosomes. Here, we took advantage of this unusual event to study the early stages of sex chromosome evolution. To do so, we sequenced a female (ZW) of two Sylvioidea species, a Zosterops borbonicus and a Z. pallidus. Then, we organized the Z. borbonicus scaffolds along chromosomes and annotated genes. Molecular phylogenetic dating under various methods and calibration sets confidently confirmed the recent diversification of the genus Zosterops (1-3.5 million years ago), thus representing one of the most exceptional rates of diversification among vertebrates. We then combined genomic coverage comparisons of five males and seven females, and homology with the zebra finch genome (Taeniopygia guttata) to identify sex chromosome scaffolds, as well as the candidate chromosome breakpoints for the two translocation events. We observed reduced levels of within-species diversity in both translocated regions and, as expected, even more so on the neoW chromosome. In order to compare the rates of molecular evolution in genomic regions of the autosomal-to-sex transitions, we then estimated the ratios of non-synonymous to synonymous polymorphisms (πN/πS) and substitutions (dN/dS). Based on both ratios, no or little contrast between autosomal and Z genes was observed, thus representing a very different outcome than the higher ratios observed at the neoW genes. In addition, we report significant changes in base composition content for translocated regions on the W and Z chromosomes and a large accumulation of transposable elements (TE) on the newly W region. Our results revealed contrasted signals of molecular evolution changes associated to these autosome-to-sex transitions, with congruent signals of a W chromosome degeneration yet a surprisingly weak support for a fast-Z effect.


2021 ◽  
Author(s):  
Richard Meisel

This article reviews and discusses ecological factors that affect sex chromosome evolution. Sex chromosomes are common features of animal genomes, and are often the location where master sex determination genes are found. Many important aspects of sex chromosome evolution are thought to be driven by sex-specific selection pressures, such as sexual antagonism and sexual selection. Sex-specific selection affects both the formation of sex chromosomes from autosomes and differences in the evolutionary trajectories between sex chromosomes and autosomes. Most population genetic models are agnostic as to whether the sex-specific selection pressures arise from intrinsic features of organismal biology or extrinsic factors that depend on environment. Here, I review the evidence that extrinsic, or ecological, factors are important determinants of sex-specific selection pressures that shape sex chromosome evolution.


2021 ◽  
Vol 376 (1832) ◽  
pp. 20200096 ◽  
Author(s):  
Daniel L. Jeffries ◽  
Jörn F. Gerchen ◽  
Mathias Scharmann ◽  
John R. Pannell

The loss of recombination between sex chromosomes has occurred repeatedly throughout nature, with important implications for their subsequent evolution. Explanations for this remarkable convergence have generally invoked only adaptive processes (e.g. sexually antagonistic selection); however, there is still little evidence for these hypotheses. Here we propose a model in which recombination on sex chromosomes is lost due to the neutral accumulation of sequence divergence adjacent to (and thus, in linkage disequilibrium with) the sex determiner. Importantly, we include in our model the fact that sequence divergence, in any form, reduces the probability of recombination between any two sequences. Using simulations, we show that, under certain conditions, a region of suppressed recombination arises and expands outwards from the sex-determining locus, under purely neutral processes. Further, we show that the rate and pattern of recombination loss are sensitive to the pre-existing recombination landscape of the genome and to sex differences in recombination rates, with patterns consistent with evolutionary strata emerging under some conditions. We discuss the applicability of these results to natural systems. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


2021 ◽  
Vol 376 (1833) ◽  
pp. 20200108 ◽  
Author(s):  
Lukáš Kratochvíl ◽  
Tony Gamble ◽  
Michail Rovatsos

Sex chromosomes are a great example of a convergent evolution at the genomic level, having evolved dozens of times just within amniotes. An intriguing question is whether this repeated evolution was random, or whether some ancestral syntenic blocks have significantly higher chance to be co-opted for the role of sex chromosomes owing to their gene content related to gonad development. Here, we summarize current knowledge on the evolutionary history of sex determination and sex chromosomes in amniotes and evaluate the hypothesis of non-random emergence of sex chromosomes. The current data on the origin of sex chromosomes in amniotes suggest that their evolution is indeed non-random. However, this non-random pattern is not very strong, and many syntenic blocks representing putatively independently evolved sex chromosomes are unique. Still, repeatedly co-opted chromosomes are an excellent model system, as independent co-option of the same genomic region for the role of sex chromosome offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and gene identity. Future studies should use these systems more to explore the convergent/divergent evolution of sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


2019 ◽  
Author(s):  
Xinji Li ◽  
Paris Veltsos ◽  
Guillaume Cossard ◽  
Jörn Gerchen ◽  
John R. Pannell

SummaryThe suppression of recombination during sex-chromosome evolution is thought to be favoured by linkage between the sex-determining locus and sexually-antagonistic loci, and leads to the degeneration of the chromosome restricted to the heterogametic sex. Despite substantial evidence for genetic degeneration at the sequence level, the phenotypic effects of the earliest stages of sex-chromosome evolution are poorly known. Here, we compare the morphology, viability and fertility between XY and YY individuals produced by crossing seed-producing males in the dioecious plant Mercurialis annua L., which has young sex chromosomes with limited X-Y sequence divergence. We found no significant difference in viability or vegetative morphology between XY and YY males. However, electron microscopy revealed clear differences in pollen anatomy, and YY males were significantly poorer sires in competition with their XY counterparts. Our study suggests either that the X chromosome is required for full male fertility in M. annua, or that male fertility is sensitive to the dosage of relevant Y-linked genes. We discuss the possibility that the maintenance of male-fertility genes on the X chromosome might have been favoured in recent population expansions, which selected for the ability of females to produce pollen in the absence of males.


2021 ◽  
Vol 376 (1832) ◽  
pp. 20200091 ◽  
Author(s):  
Qiaowei Pan ◽  
Tomas Kay ◽  
Alexandra Depincé ◽  
Mateus Adolfi ◽  
Manfred Schartl ◽  
...  

To date, more than 20 different vertebrate master sex-determining genes have been identified on different sex chromosomes of mammals, birds, frogs and fish. Interestingly, six of these genes are transcription factors ( Dmrt1 - or Sox3 - related) and 13 others belong to the TGF-β signalling pathway ( Amh , Amhr2 , Bmpr1b , Gsdf and Gdf6 ). This pattern suggests that only a limited group of factors/signalling pathways are prone to become top regulators again and again. Although being clearly a subordinate member of the sex-regulatory network in mammals, the TGF-β signalling pathway made it to the top recurrently and independently. Facing this rolling wave of TGF-β signalling pathways, this review will decipher how the TGF-β signalling pathways cope with the canonical sex gene regulatory network and challenge the current evolutionary concepts accounting for the diversity of sex-determining mechanisms. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


Sign in / Sign up

Export Citation Format

Share Document