scholarly journals Sema3A Facilitates a Retrograde Death Signal via CRMP4-Dynein Complex Formation in ALS Motor Axons

2019 ◽  
Author(s):  
Roy Maimon ◽  
Lior Ankol ◽  
Romana Weissova ◽  
Elizabeth Tank ◽  
Tal Gradus Pery ◽  
...  

AbstractAmyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with selective dysfunction; it causes the death of motor neurons (MNs). In spite of some progress, currently no effective treatment is available for ALS. Before such treatment can be developed, a more thorough understanding of ALS pathogenesis is required. Recently, we demonstrated that ALS-mutated muscles contribute to ALS pathology via secretion of destabilizing factors such as Sema3A; these factors trigger axon degeneration and Neuromuscular Junction (NMJ) disruption. Here, we focus on the molecular mechanism by which muscle contribute to MNs loss in ALS. We identified CRMP4 as part of a retrograde death signal generated in response to muscle-secreted Sema3A, in ALS-diseased MNs. Exposing distal axons to Sema3A induces CRMP4-dynein complex formation and MN loss in both mouse (SOD1G93A) and human-derived (C9orf72) ALS models. Introducing peptides that interfere with CRMP4-dynein interaction in MN axons profoundly reduces Sema3A-dependent MN loss. Thus, we discovered a novel retrograde death signal mechanism underlying MN loss in ALS.SummaryMaimon et al. identify a novel retrograde death mechanism that contribute to MN loss in ALS, in which CRMP4-Dynein complex is form and retrogradely move along the axon.

2021 ◽  
Vol 22 (2) ◽  
pp. 740
Author(s):  
Enrique Madruga ◽  
Inés Maestro ◽  
Ana Martínez

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that usually results in respiratory paralysis in an interval of 2 to 4 years. ALS shows a multifactorial pathogenesis with an unknown etiology, and currently lacks an effective treatment. The vast majority of patients exhibit protein aggregation and a dysfunctional mitochondrial accumulation in their motoneurons. As a result, autophagy and mitophagy modulators may be interesting drug candidates that mitigate key pathological hallmarks of the disease. This work reviews the most relevant evidence that correlate mitophagy defects and ALS, and discusses the possibility of considering mitophagy as an interesting target in the search for an effective treatment for ALS.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 371 ◽  
Author(s):  
Sarah Martin ◽  
Ahmad Al Khleifat ◽  
Ammar Al-Chalabi

Amyotrophic lateral sclerosis is a neurodegenerative disease predominantly affecting upper and lower motor neurons, resulting in progressive paralysis and death from respiratory failure within 2 to 3 years. The peak age of onset is 55 to 70 years, with a male predominance. The causes of amyotrophic lateral sclerosis are only partly known, but they include some environmental risk factors as well as several genes that have been identified as harbouring disease-associated variation. Here we review the nature, epidemiology, genetic associations, and environmental exposures associated with amyotrophic lateral sclerosis.


2019 ◽  
Vol 20 (11) ◽  
pp. 2759 ◽  
Author(s):  
Laura Moreno-Martinez ◽  
Ana Cristina Calvo ◽  
María Jesús Muñoz ◽  
Rosario Osta

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has no effective treatment. The lack of any specific biomarker that can help in the diagnosis or prognosis of ALS has made the identification of biomarkers an urgent challenge. Multiple panels have shown alterations in levels of numerous cytokines in ALS, supporting the contribution of neuroinflammation to the progressive motor neuron loss. However, none of them is fully sensitive and specific enough to become a universal biomarker for ALS. This review gathers the numerous circulating cytokines that have been found dysregulated in both ALS animal models and patients. Particularly, it highlights the opposing results found in the literature to date, and points out another potential application of inflammatory cytokines as therapeutic targets.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Pascal Branchereau ◽  
Elodie Martin ◽  
Anne-Emilie Allain ◽  
William Cazenave ◽  
Laura Supiot ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons (MNs) during late adulthood. Here, with the aim of identifying early changes underpinning ALS neurodegeneration, we analyzed the GABAergic/glycinergic inputs to E17.5 fetal MNs from SOD1G93A (SOD) mice in parallel with chloride homeostasis. Our results show that IPSCs are less frequent in SOD animals in accordance with a reduction of synaptic VIAAT-positive terminals. SOD MNs exhibited an EGABAAR 10 mV more depolarized than in WT MNs associated with a KCC2 reduction. Interestingly, SOD GABAergic/glycinergic IPSCs and evoked GABAAR-currents exhibited a slower decay correlated to elevated [Cl-]i. Computer simulations revealed that a slower relaxation of synaptic inhibitory events acts as compensatory mechanism to strengthen GABA/glycine inhibition when EGABAAR is more depolarized. How such mechanisms evolve during pathophysiological processes remain to be determined, but our data indicate that at least SOD1 familial ALS may be considered as a neurodevelopmental disease.


2021 ◽  
Author(s):  
Marina Duarte Gama Vieira ◽  
Anna Letícia Siqueira de Medeiros ◽  
Narayna Suellen Santos da Silva ◽  
Edlene Lima Ribeiro

Background: Amyotrophic lateral sclerosis is a rare neurodegenerative disease that acts on the upper and lower motor neurons, causing muscle weakness.¹²³Dysphagia occurs due to malfunction of the swallowing mechanisms and generates functional problems.⁴⁵⁶ Objectives: Describe the pathophysiology of dysphagia and discuss strategies for symptom relief. Design and setting: Systematic review, Faculdade Integrada Tiradentes, Jaboatão dos Guararapes - PE. Methods: Systematic review of 10 articles from the last years. Results: Dysarthria and dysphagia are common signs of upper motor neuron involvement and 80% of ALS cases exhibit asymmetric limb weakness.⁶ Conclusions: To improve the nutrition of patients with dysphagia, is suggested the use of supplements, changes in diet and food consistency, along with education on safe swallowing modes. Also percutaneous endoscopic gastrostomy can be used as an alternative. ⁷⁸⁹¹⁰


2020 ◽  
Author(s):  
Martineau Éric ◽  
Danielle Arbour ◽  
Joanne Vallée ◽  
Robitaille Richard

ABSTRACTAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motoneurons in a motor-unit (MU) dependent manner. Glial dysfunction contributes to numerous aspects of the disease. At the neuromuscular junction (NMJ), early alterations in perisynaptic Schwann cell (PSC), glial cells at this synapse, may impact their ability to regulate NMJ stability and repair. Indeed, muscarinic receptors (mAChR) regulate the repair phenotype of PSCs and are overactivated at disease-resistant NMJs (Soleus muscle) in SOD1G37R mice. However, it remains unknown whether this is the case at disease-vulnerable NMJs and whether it translates into an impairment of PSC-dependent repair mechanisms. We used Soleus and Sternomastoid muscles from SOD1G37R mice and performed Ca2+-imaging to monitor PSC activity and used immunohistochemistry to analyze their repair and phagocytic properties. We show that PSC mAChR-dependent activity was transiently increased at disease-vulnerable NMJs (Sternomastoid muscle). Furthermore, PSCs from both muscles extended disorganized processes from denervated NMJs and failed to initiate or guide nerve terminal sprouts at disease-vulnerable NMJs, a phenomenon essential for compensatory reinnervation. This was accompanied by a failure of numerous PSCs to upregulate Galectin-3 (MAC-2), a marker of glial axonal debris phagocytosis, upon NMJ denervation in SOD1 mice. Finally, differences in these PSC-dependent NMJ repair mechanisms were MU-type dependent, thus reflecting MU vulnerability in ALS. Together, these results reveal that neuron-glia communication is ubiquitously altered at the NMJ in ALS. This appears to prevent PSCs from adopting a repair phenotype, resulting in a maladapted response to denervation at the NMJ in ALS.SIGNIFICANCE STATEMENTUnderstanding how the complex interplay between neurons and glial cells ultimately lead to the degeneration of motor neurons and loss of motor function is a fundamental question to comprehend amyotrophic lateral sclerosis. An early and persistent alteration of glial cell activity takes place at the neuromuscular junction (NMJ), the output of motor neurons, but its impact on NMJ repair remains unknown. Here, we reveal that glial cells at disease-vulnerable NMJs often fail to guide compensatory nerve terminal sprouts and to adopt a phagocytic phenotype on denervated NMJs in SOD1G37R mice. These results show that glial cells at the NMJ elaborate an inappropriate response to NMJ degeneration in a manner that reflects motor-unit vulnerability and potentially impairs compensatory reinnervation.


2019 ◽  
Vol 18 (5) ◽  
pp. 366-371 ◽  
Author(s):  
Lian Li ◽  
Jie Liu ◽  
Hua She

Background & Objective: Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that specifically affects motor neurons in the brain and in the spinal cord. Patients with amyotrophic lateral sclerosis usually die from respiratory failure within 3 to 5 years from when the symptoms first appear. Currently, there is no cure for amyotrophic lateral sclerosis. Accumulating evidence suggests that dismantling of neuromuscular junction is an early event in the pathogenesis of amyotrophic lateral sclerosis. Conclusion: It is starting to realized that macrophage malfunction contributes to the disruption of neuromuscular junction. Modulation of macrophage activation states may stabilize neuromuscular junction and provide protection against motor neuron degeneration in amyotrophic lateral sclerosis.


2021 ◽  
Vol 7 (3) ◽  
pp. 155-162
Author(s):  
Qing Cai ◽  
Mengya Li ◽  
Qifang Li

Amyotrophic lateral sclerosis (ALS) is a worldwide problem with no effective treatment. Patients usually die of respiratory failure. The basic pathological process of ALS is the degeneration and necrosis of motor neurons. Neuroglial cell dysfunction is considered closely related to the development of ALS. Sleep plays an important role in repairing the nervous system, and sleep disorders can worsen ALS. Herein, we review the pathogenesis of ALS and the neuroprotective mechanism of sleep‐based therapy. Sleep‐based therapy could be a potential strategy to treat ALS.


Sign in / Sign up

Export Citation Format

Share Document