StrainPro – a highly accurate Metagenomic strain-level profiling tool
ABSTRACTCharacterizing the taxonomic diversity of a microbial community is very important to understand the roles of microorganisms. Next generation sequencing (NGS) provides great potential for investigation of a microbial community and leads to Metagenomic studies. NGS generates DNA fragment sequences directly from microorganism samples, and it requires analysis tools to identify microbial species (or taxonomic composition) and estimate their relative abundance in the studied community. However, only a few tools could achieve strain-level identification and most tools estimate the microbial abundances simply according to the read counts. An evaluation study on metagenomic analysis tools concludes that the predicted abundance differed significantly from the true abundance. In this study, we present StrainPro, a novel metagenomic analysis tool which is highly accurate both at characterizing microorganisms at strain-level and estimating their relative abundances. A unique feature of StrainPro is it identifies representative sequence segments from reference genomes. We generate three simulated datasets using known strain sequences and another three simulated datasets using unknown strain sequences. We compare the performance of StrainPro with seven existing tools. The results show that StrainPro not only identifies metagenomes with high precision and recall, but it is also highly robust even when the metagenomes are not included in the reference database. Moreover, StrainPro estimates the relative abundance with high accuracy. We demonstrate that there is a strong positive linear relationship between observed and predicted abundances.