scholarly journals Critical analysis of the mosquito repellency evoked by the 10-34 kHz recorded animal sounds: The case of the African female A. gambiae s.s

2019 ◽  
Author(s):  
Philip Amuyunzu Mang’are ◽  
Francis Ndiritu Gichuki ◽  
Samwel Rotich ◽  
Jacqueline K. Makatiani ◽  
Bernard Rapando Wakhu

AbstractAnimals sounds have been mimicked in electronic mosquito repellents (EMRs) and exploited as a tool in the control of malaria by targeting the vector, the female Anopheles gambiae s.s. The claimed mosquito repellency of 30.3 % due to Anti-Pic®, an electronic mosquito repellent, had failed to be confirmed in subsequent studies. However, studies on mosquito startle based on initial behavioural activities without an attractant yielded 34.12 % repellency elicited by the 10-34 kHz recorded sound of O. tormota. Other malaria intervention measures involving the use of chemicals have been impeded by the pathogen and vector resistance hence slowing down the rate of decline of malaria morbidity and mortality. The research thus focused on the analytical study of the African female A. gambiae s.s repellency evoked by the 10-34 kHz recorded animal sound of male mosquito, Anopheles gambiae and Delphinapterus leucas. Landing rates and behavioural startle responses of the mated female A. gambiae on food attractant evoked by the individual sound of the male mosquito, A. gambiae, O. tormota and D. leucas were determined and analysed. The male and female A. gambiae were bred and reared under controlled laboratory conditions of 60-80 % humidity, 25±2 °C temperature with equal light-darkness hour cycle in KEMRI, entomology laboratories. Isolation of the male and female mosquitoes from a swarm was based on physical features and affinity to blood meal. The sounds of O. tormota and D. leucas were acquired and the sound of the male A. gambiae were recorded from the Kenya Medical Research Institute (KEMRI) entomology laboratory, Kisumu. The sounds were filtered into 10-34 kHz frequency band and analysed using Avisoft-SAS LAB Pro version 5.2 and Raven Pro 1.5 software. The sound of O. tormota was also studied. A fighto-Y glass cage well designed into control, neutral and treatment chambers was used in the study. Both control and treatment chambers were connected to blood meal maintained at 38.60°C. The treatment cage was also connected to the source of sound and a swarm of 50 female mosquitoes into the neutral cage and observed for 1,200 s. The sounds of the A. gambiae, O. tormota and D. leucas yielded 2.10, 2.20 and 3.00 landings/minute respectively associated with adverse behaviour. The protection index (PI) anchored on the number of mosquitoes that landed, probed and fed on the blood meal in the treatment and neutral cage for the sounds of the A. gambiae, O. tormota and D. leucas was 42.73 %, 40.24 % and 10.64 % respectively. The sound of the A. gambiae was characterised by steady and minimally dipped pulsate acoustic power with wide bandwidth. The protection index achieved by the sound of the male A. gambiae did not differ significantly from the sound of O. tormota (0.1740 > 0.05), though differed significantly from the sound emitted from the Anti-Pic® EMR (p = 5.3440 x 10−5).The author summaryPhilip Amuyunzu Mang’are is a PhD. Physics student in Egerton University. He has authored many papers and books. He is currently a Lecturer of Physics (Electronics), Masinde Muliro University of Science and Technology. He is a member of the Biophysical Society and the current President of Biophysical society (Kenya). Prof. Ndiritu F. Gichuki, is a Professor of Physics Egerton University. Currently he is the Registrar Academic Affairs in Chuka University. His vast experience has seen him supervise many postgraduate students who have taken key positions in the society. Prof. Samwel Rotich is a Profesor of Physics in Moi University specialising in Electronics. He has a wide experience in Physics and Biophysics. He is a registered member of the Biophysical Society and the Patron of Biophysical Society Kenya Chapter. He has published many papers and supervised many postgraduate students. Dr. Makatiani Kubochi is a Lecturer in Moi University with vast experience in entomology. She has published many papers and supervised many postgraduate students. Dr. Rapando Bernard Wakhu is a renown theoretical Physicist with experience in acoustics and Fourier analysis based in Masinde Muliro University of Science and Technology. He has supervised many postgraduate students and published many papers.

2019 ◽  
Author(s):  
P. A. Mang’are ◽  
F. G. Ndiritu ◽  
S. K. Rotich ◽  
J. K. Makatiani ◽  
B. W. Rapando

AbstractAcoustics of varied frequency ranges generated naturally by animals or artificially by electronic devices have shown startle effect to insects. It has been shown that mosquitoes use the reactive near-field in antennae communication with negative phonotaxis in maleAedes diantaeusevoked by low frequency acoustic signals of a carrier frequency 140–200 Hz. Also, studies with the 35-60 kHzOdorrana tormotasound recorded a 46 % repellence in femaleAnopheles gambiae, the malaria vectors. Declining malaria morbidity and mortality is attributed to current vector and pathogen interventions. However, the rate of decline in malaria morbidity and mortality is impeded by buildup of resistance in pathogens and vectors to chemicals. This study therefore characterised animal sounds essential for further investigation in the control of malaria through mosquito startle. The research determined, analysed and compared the acoustic propagation parameters of the recorded natural sounds of the maleAnopheles gambiae, femaleAnopheles gambiaeandOdorrana tormotausing Avisoft SASLAB Pro and Raven Pro 1.5. All sounds were observed to have frequency modulation with harmonics stretching to ultrasonic levels. Uniquesly, the sound ofO. tormotashowed constant frequency modulation. The pupae ofA. gambiaewere reared in vials quarter filled with water and covered with a net at 60-80 % humidity, 25±2 °C temperature and equal light-darkness hour cycle at Kenya Medical Research Institute (KEMRI) entomology laboratories. The parameters showed a significant deference in fundamental frequency (maximum entire), Peak amplitude (maximum), peak amplitude (mean), Peak amplitude (mean entire) and peak amplitude (maximum entire) of the sound of maleA. gambiaeandO. tormota(p < 0.05). The maximum frequency (minimum entire) of both sexes ofA. gambiaewas equal (1.90 kHz) with variability being observed in maximum frequency (end), maximum frequency (maximum), maximum frequency (mean), maximum frequency (maximum entire) and maximum frequency (mean entire). Frequency (maximum). A paired samples t-test comparison of the maximum frequency (mean), maximum frequency (maximum), maximum frequency (end), maximum frequency (maximum entire) and maximum frequency (mean entire) of the sound of the femaleA. gambiaeand maleA. gambiaeindicated no significant difference between the sounds (p > 0.05). The maximum frequency (mean) of the sounds of both sexes ofA. gambiaecorrelated highly negative (r = −0.658). The bandwidth (end), bandwidth (maximum), bandwidth (maximum entire), peak amplitude (mean) and bandwidth (mean entire) of the sound of the male compared with femaleA. gambiaediffered significantly. The signal power for the non-pulsate sounds of the maleA. gambiaeremained almost constant at 80 dB from 10 kHz to 65 kHz beyond which the acoustic energy declining to 45 dB. Also, the sounds of the femaleA. gambiaedid not exhibit any spikes in power but remained steady at 85 dB from 10 kHz up to 60 kHz beyond which the acoustic energy declined to 50 dB. The signal power of the pulsate sound ofO. tormotawas 89 dB. The propagation parameters of the male mosquito and O. tormota compared favourably indicating its potential in the startle of the female mosquito.The author summaryPhilip Amuyunzu Mang’are is a PhD. Physics student in Egerton University. He has authored many papers and books. He is currently a Lecturer of Physics (Electronics), Masinde Muliro University of Science and Technology. He is a member of the Biophysical Society and the current President of Biophysical society (Kenya). Prof. Ndiritu F. Gichuki, is a Professor of Physics Egerton University. Currently he is the Registrar Academic Affairs in Chuka University. His vast experience has seen him supervise many postgraduate students who have taken key positions in the society. Prof. Samwel Rotich is a Profesor of Physics in Moi University specialising in Electronics. He has a wide experience in Physics and Biophysics. He is a registered member of the Biophysical Society and the Patron of Biophysical Society Kenya Chapter. He has published many papers and supervised many postgraduate students. Dr. Makatiani Kubochi is a Lecturer in Moi University with vast experience in entomology. She has published many papers and supervised many postgraduate students. Dr. Rapando Bernard Wakhu is a renown theoretical Physicist with experience in acoustics and Fourier analysis based in Masinde Muliro University of Science and Technology. He has supervised many postgraduate students and published many papers.


2001 ◽  
Vol 10 (1) ◽  
pp. 25-32 ◽  
Author(s):  
G. Gentile ◽  
M. Slotman ◽  
V. Ketmaier ◽  
J. R. Powell ◽  
A. Caccone

2014 ◽  
Vol 51 (6) ◽  
pp. 1268-1275 ◽  
Author(s):  
David F. Hoel ◽  
Jake A. Marika ◽  
James C. Dunford ◽  
Seth R. Irish ◽  
Martin Geier ◽  
...  

2009 ◽  
Vol 81 (6) ◽  
pp. 1023-1029 ◽  
Author(s):  
Thierry Lefèvre ◽  
Frédéric Thomas ◽  
François Renaud ◽  
Eric Elguero ◽  
Didier Fontenille ◽  
...  

2001 ◽  
Vol 10 (1) ◽  
pp. 9-18 ◽  
Author(s):  
A. della Torre ◽  
C. Fanello ◽  
M. Akogbeto ◽  
J. Dossou-yovo ◽  
G. Favia ◽  
...  

Author(s):  
Abdulelah A. Alghamdi ◽  
Margaret Plunkett

This paper outlines a study exploring the perceptions of Saudi male and female postgraduate students regarding the impact of using Social Networking Sites and Apps (SNSAs) on their academic engagement and academic relationships. While research on SNSA use within the higher education environment does exist, mixed gender research has often presented challenges in Saudi Arabia, due to the educational segregation. A mixed methods approach was used to collect data through surveys, individual interviews and focus groups involving 313 male and 293 female postgraduate students at Umm Al-Qura University (UQU) in Makkah. Findings illustrated that both males and females engaged with SNSAs at a moderate level of use for academic purposes, and they perceived more positive than negative impacts associated with the academic use of SNSAs. Correlational analysis demonstrated a large positive correlation between academic engagement and academic relationships. Gender differences were not extensive however, the quantitative analysis highlighted more prominent involvement with SNSAs by females which is interesting, in light of social restrictions experienced by females in Saudi society.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0164518 ◽  
Author(s):  
Angélique Porciani ◽  
Malal Diop ◽  
Nicolas Moiroux ◽  
Tatiana Kadoke-Lambi ◽  
Anna Cohuet ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 290
Author(s):  
Iswadi Iswadi ◽  
Apriyanto Apriyanto

<p><em>E-learning during covid-19 pandemic gives positive and negative effects on students’ psychology. One of the effects of E-Learning is students whose negative and positive perception towards the process of E-Learning. The objectives of the study are to know (1)  The difference perception between male and female EFL post-graduate students of the use of online learning platforms? (2). Impacts psychologically of E-learning during Covid-19 to female and male EFL students in higher education. The method of the study is mixed research with the explanatory sequential design. The participants were 31 EFL postgraduate students in PGRI Indraprasta University. The data collection technique of the study was questionnaires with a Likert scale and an open interview. The data analysis technique of the study is an independent sample t-test with SPSS 22.0 version and collection, reduction, display, and conclusion. The results of the study are: (1) There is no significant difference perception between male and female EFL postgraduate students of the use of online learning platform because the significance value (0.695) which is bigger than 0.05. (2)  E-learning during the Covid-19 pandemic did not  give anxiety, fear, fatigue, and saturation to female and male EFL students in higher education. Implication of this research is University must develop LMS (Learning Management System) for teaching EFL students</em></p>


2014 ◽  
Vol 7 (3) ◽  
pp. 193-198 ◽  
Author(s):  
Solange Ribeiro Peixoto ◽  
José Jurberg

Rhodnius stali Lent, Jurberg & Galvão vetor da Doença de Chagas domiciliado na região do Alto Beni, Bolívia é uma espécie com a biologia pouco conhecida. Com o objetivo de ampliar o conhecimento acerca de sua biologia, observamos parâmetros de seu ciclo de vida, nos estádios de ninfa, comparando-os com Rhodnius pictipes Stål, espécie morfologicamente semelhante e filogeneticamente próxima. Os seguintes parâmetros foram observados: tempo de eclosão dos ovos, ciclo biológico de ovo-adulto (em machos e fêmeas separadamente), taxa de mortalidade, idade do primeiro repasto sanguíneo e volume de sangue ingerido pelas ninfas. De maneira geral observou-se que as R. stali tem um ciclo de vida mais longo do que R. pictipes e, em ambas espécies, o tempo entre a eclosão do ovo até a fase adulta é menor em fêmeas. Curiosamente para R. stali, que é sabidamente capaz de colonizar domicílios, foi observada uma taxa de mortalidade das ninfas mais alta que em R. pictipes, algo inesperado para a espécie que coloniza estruturas artificiais e foi observada em ambiente artificial. Para R. stali, o primeiro repasto sanguíneo ocorreu, em média, quatro dias mais tarde do que em R. pictipes, espécie que ingeriu um volume total de sangue maior, possivelmente pelo fato de seu corpo ser maior. Conhecendo-se com profundidade os aspectos biológicos dessas espécies será possível direcionar o controle vetorial com mais precisão, principalmente em regiões onde colonizam casas, como no Alto Beni, Bolívia. Biology of Rhodnius stali Lent, Jurberg & Galvão and Rhodnius pictipes Stål (Hemiptera, Reduviidae, Triatiminae) in Laboratory Conditions Abstract. Rhodnius stali Lent, Jurberg & Galvão is a Chagas Disease vector that colonize houses in the Alto Beni region, Bolivia and its biology is poorly known. Aiming to enhance the understanding about their biology, we observed a few parameters of its life cycle, at nymphal stages, comparing them with Rhodnius pictipes Stål a morphologically similar and phylogenetically close species. The following parameters were observed: time of hatching, development time from egg to adult (male and female separately), mortality rate, age at first blood meal and blood volume ingested by nymphs. In general, it was observed that the R. stali has longer cycle than R. pictipes, and in both species, the time between hatching the egg to adult in females is lower. Interestingly for R. stali, which is known to be capable of colonizing households, the mortality rate of nymphs was higher than observed in R. pictipes, something unexpected for species that colonize artificial structures and was observed in artificial environment. For R. stali, the first blood meal was, on average, four days later than for R. pictipes, species that ingested a greater total blood volume, possibly because of its bigger size. By knowing in depth the biological aspects of these species it will be possible to direct vector control more accurately, especially in regions where they colonize houses, as in the Alto Beni, Bolivia.


Sign in / Sign up

Export Citation Format

Share Document