Chronic Calcium Imaging of Neurons in the Mouse Visual Cortex Using a Troponin C-Based Indicator

2014 ◽  
Vol 2014 (5) ◽  
pp. pdb.prot081737-pdb.prot081737 ◽  
Author(s):  
A. F. Santos ◽  
M. Hubener
2018 ◽  
Author(s):  
J.J. Pattadkal ◽  
G. Mato ◽  
C. van Vreeswijk ◽  
N. J. Priebe ◽  
D. Hansel

SummaryWe study the connectivity principles underlying the emergence of orientation selectivity in primary visual cortex (V1) of mammals lacking an orientation map. We present a computational model in which random connectivity gives rise to orientation selectivity that matches experimental observations. It predicts that mouse V1 neurons should exhibit intricate receptive fields in the two-dimensional frequency domain, causing shift in orientation preferences with spatial frequency. We find evidence for these features in mouse V1 using calcium imaging and intracellular whole cell recordings.


2020 ◽  
Author(s):  
Ting Fu ◽  
Isabelle Arnoux ◽  
Jan Döring ◽  
Hirofumi Watari ◽  
Ignas Stasevicius ◽  
...  

AbstractTwo-photon (2-P) all-optical approaches combine in vivo 2-P calcium imaging and 2-P optogenetic modulations and have the potential to build a framework for network-based therapies, e.g. for rebalancing maladaptive activity patterns in preclinical models of neurological disorders. Here, our goal was to tailor these approaches for this purpose: Firstly, we combined in vivo juxtacellular recordings and GCaMP6f-based 2-P calcium imaging in layer II/III of mouse visual cortex to tune our detection algorithm towards a 100 % specific identification of AP-related calcium transients. False-positive-free detection was achieved at a sensitivity of approximately 73 %. To further increase specificity, secondly, we minimized photostimulation artifacts as a potential source for false-positives by using extended-wavelength-spectrum laser sources for optogenetic stimulation of the excitatory opsin C1V1. We achieved artifact-free all-optical experiments performing photostimulations at 1100 nm or higher and simultaneous calcium imaging at 920 nm in mouse visual cortex in vivo. Thirdly, we determined the spectral range for maximizing efficacy of optogenetic control by performing 2-P photostimulations of individual neurons with wavelengths up to 1300 nm. The rate of evoked transients in GCaMP6f/C1V1-co-expressing cortical neurons peaked already at 1100 nm. By refining spike detection and defining 1100 nm as the optimal wavelength for artifact-free and effective stimulations of C1V1 in GCaMP-based all-optical interrogations, we increased the translational value of these approaches, e.g. for the use in preclinical applications of network-based therapies.One Sentence SummaryWe maximize translational relevance of 2-P all-optical physiology by increasing specificity, minimizing artifacts and optimizing stimulation efficacy.


2010 ◽  
Vol 68 ◽  
pp. e267
Author(s):  
Kohei Yoshitake ◽  
Manavu Tohmi ◽  
Ryuichi Hishida ◽  
Takeshi Yagi ◽  
Katsuei Shibuki

Sign in / Sign up

Export Citation Format

Share Document