scholarly journals Induced spin-triplet pairing in the coexistence state of antiferromagnetism and singlet superconductivity: Collective modes and microscopic properties

2017 ◽  
Vol 96 (1) ◽  
Author(s):  
D. E. Almeida ◽  
R. M. Fernandes ◽  
E. Miranda
Science ◽  
2019 ◽  
Vol 366 (6462) ◽  
pp. 238-241 ◽  
Author(s):  
Yufan Li ◽  
Xiaoying Xu ◽  
M.-H. Lee ◽  
M.-W. Chu ◽  
C. L. Chien

Magnetic flux quantization is one of the defining properties of a superconductor. We report the observation of half-integer magnetic flux quantization in mesoscopic rings of superconducting β-Bi2Pd thin films. The half-quantum fluxoid manifests itself as a π phase shift in the quantum oscillation of the superconducting critical temperature. This result verifies unconventional superconductivity of β-Bi2Pd and is consistent with a spin-triplet pairing symmetry. Our findings may have implications for flux quantum bits in the context of quantum computing.


2013 ◽  
Vol 82 (12) ◽  
pp. 124702 ◽  
Author(s):  
Shiro Kawabata ◽  
Yasuhiro Asano ◽  
Yukio Tanaka ◽  
Alexander A. Golubov
Keyword(s):  

2021 ◽  
Author(s):  
Atindra Pal ◽  
Arnab Bera ◽  
Sirshendu Gayen ◽  
Suchanda Mondal ◽  
Riju Pal ◽  
...  

Abstract Low-dimensional materials with broken inversion symmetry and strong spin-orbit coupling can give rise to fascinating quantum phases and phase transitions. Here we report coexistence of superconductivity and ferromagnetism below 2.5 K in the quasione dimensional crystals of non-centrosymmetric (TaSe4)3I (space group: P¯421c). The unique phase is a direct consequence of inversion symmetry breaking as the same material also stabilizes in a centro-symmetric structure (space group: P4/mnc) where it behaves like a non-magnetic insulator[1–4]. The coexistence here upfront contradicts the popular belief that superconductivity and ferromagnetism are two apparently antagonistic phenomena. Notably, here, for the first time, we have clearly detected Meissner effect in the superconducting state despite the coexisting ferromagnetic order. The coexistence of superconductivity and ferromagnetism projects non-centrosymmetric (TaSe4)3I as a host for complex ground states of quantum matter including possible unconventional superconductivity with elusive spin-triplet pairing[5–8].


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lev B. Leinson

A brief review is given of the current state of the problem of neutrino pair emission through neutral weak currents caused by the Cooper pairs breaking and formation (PBF) in superfluid baryon matter at thermal equilibrium. The cases of singlet-state pairing with isotropic superfluid gap and spin-triplet pairing with an anisotropic gap are analyzed with allowance for the anomalous weak interactions caused by superfluidity. It is shown that taking into account the anomalous weak interactions in both the vector and axial channels is very important for a correct description of neutrino energy losses through the PBF processes. The anomalous contributions lead to an almost complete suppression of the PBF neutrino emission in spin-singlet superfluids and strong reduction of the PBF neutrino losses in the spin-triplet superfluid neutron matter, which considerably slows down the cooling rate of neutron stars with superfluid cores.


Sign in / Sign up

Export Citation Format

Share Document