scholarly journals Soft nuclear equation-of-state from heavy-ion data and implications for compact stars

2012 ◽  
Vol 86 (4) ◽  
Author(s):  
Irina Sagert ◽  
Laura Tolos ◽  
Debarati Chatterjee ◽  
Jürgen Schaffner-Bielich ◽  
Christian Sturm
Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1406
Author(s):  
Rémi Bougault ◽  
Bernard Borderie ◽  
Abdelouahad Chbihi ◽  
Quentin Fable ◽  
John David Frankland ◽  
...  

Correlations and clustering are of great importance in the study of the Nuclear Equation of State. Information on these items/aspects can be obtained using heavy-ion reactions which are described by dynamical theories. We propose a dataset that will be useful for improving the description of light cluster production in transport model approaches. The dataset combines published and new data and is presented in a form that allows direct comparison of the experiment with theoretical predictions. The dataset is ranging in bombarding energy from 32 to 1930 A MeV. In constructing this dataset, we put in evidence the existence of a change in the light cluster production mechanism that corresponds to a peak in deuteron production.


2020 ◽  
Vol 13 ◽  
pp. 203
Author(s):  
T. Gaitanos ◽  
M. Colonna ◽  
M. Di Toro ◽  
H. H. Wolter

We present several possibilities offered by the dynamics of intermediate energy heavy ion collisions to investigate the nuclear matter equation of state (EoS) beyond the ground state. In particular the relation between the reaction dynamics and the high density nuclear EoS is discussed by comparing theoretical results with experiments.


2007 ◽  
Vol 35 (1) ◽  
pp. 014053 ◽  
Author(s):  
Irina Sagert ◽  
Mirjam Wietoska ◽  
Jürgen Schaffner-Bielich ◽  
Christian Sturm

Universe ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 14 ◽  
Author(s):  
Sylvain Mogliacci ◽  
Isobel Kolbé ◽  
W. Horowitz

In this article, we start by presenting state-of-the-art methods allowing us to compute moments related to the globally conserved baryon number, by means of first principle resummed perturbative frameworks. We focus on such quantities for they convey important properties of the finite temperature and density equation of state, being particularly sensitive to changes in the degrees of freedom across the quark-hadron phase transition. We thus present various number susceptibilities along with the corresponding results as obtained by lattice quantum chromodynamics collaborations, and comment on their comparison. Next, omitting the importance of coupling corrections and considering a zero-density toy model for the sake of argument, we focus on corrections due to the small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics, we present a few preliminary thermodynamic results together with the speed of sound for certain finite size relativistic quantum systems at very high temperature.


2001 ◽  
Vol 86 (10) ◽  
pp. 1974-1977 ◽  
Author(s):  
C. Fuchs ◽  
Amand Faessler ◽  
E. Zabrodin ◽  
Yu-Ming Zheng

Sign in / Sign up

Export Citation Format

Share Document