scholarly journals Shell model versus liquid drop model for strangelets

1994 ◽  
Vol 50 (5) ◽  
pp. 3328-3331 ◽  
Author(s):  
Jes Madsen
2000 ◽  
Vol 09 (01) ◽  
pp. 51-66 ◽  
Author(s):  
RADU A. GHERGHESCU ◽  
GUY ROYER

The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr , 132 Ce , 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states.


2019 ◽  
Vol 14 (9) ◽  
pp. 59
Author(s):  
Nguyen An Son ◽  
Le Viet Huy ◽  
Pham Ngoc Son ◽  
Ho Huu Thang

140La is created from the thermal neutron capture reaction of 139La, which is the product of the fission reaction. It makes some effects into the components of the nuclear reactor core. Understanding the properties and structure of 140La is important in operating the nuclear reactor. Besides that, nuclear structure models are very effective in explaining the properties of nuclear structure. There are many nuclear structure models to solve those problems, such as Liquid Drop Model, Shell Model, Fermi Model, etc. Among them, the Collective Model has been very successful in describing the variety of nuclear properties, especially energy levels in deformed nuclei that the Shell Model and the Liquid Drop Model does not apply. This paper presents the application of the Collective Model to determine some vibrational bands of 140La nucleus. This experiment is performed at channel No.2 of Dalat Research Reactor (DRR), Prompt gamma neutron activation analysis method (PGNAA) is used. The result has found 8 vibrational bands of 140La nucleus.  It’s quite relevant to the theoretical calculation. The deviations are less than 1.6 %.


1963 ◽  
Vol 46 ◽  
pp. 639-659 ◽  
Author(s):  
V.M. Strutinsky ◽  
N.Ya. Lyashchenko ◽  
N.A. Popov

1999 ◽  
Vol 652 (2) ◽  
pp. 142-163 ◽  
Author(s):  
J. Piperova ◽  
D. Samsoen ◽  
P. Quentin ◽  
K. Bencheikh ◽  
J. Bartel ◽  
...  

Author(s):  
Rupert L. Frank ◽  
Phan Thành Nam

AbstractWe revisit the liquid drop model with a general Riesz potential. Our new result is the existence of minimizers for the conjectured optimal range of parameters. We also prove a conditional uniqueness of minimizers and a nonexistence result for heavy nuclei.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012004
Author(s):  
N A Zemlyakov ◽  
A I Chugunov ◽  
N N Shchechilin

Abstract Neutron stars are superdense compact astrophysical objects. The central region of the neuron star (the core) consists of locally homogeneous nuclear matter, while in the outer region (the crust) nucleons are clustered. In the outer crust these nuclear clusters represent neutron-rich atomic nuclei and all nucleons are bound within them. Whereas in the inner crust some neutrons are unbound, but nuclear clusters still keeps generally spherical shape. Here we consider the region between the crust and the core of the star, so-called mantle, where non-spherical nuclear clusters may exist. We apply compressible liquid drop model to calculate the energy density for several shape types of nuclear clusters. It allows us to identify the most energetically favorable configuration as function of baryon number density. Employing four Skyrme-type forces (SLy4 and BSk24, BSk25, BSk26), which are widely used in the neutron star physics, we faced with strong model dependence of the ground state composition. In particular, in agreement with previous works within liquid drop model, mantle is absent for SLy4 (nuclear spheres directly transit into homogeneous nuclear matter; exotic nuclear shapes do not appear).


Sign in / Sign up

Export Citation Format

Share Document