Oscillations of very low energy atmospheric neutrinos

2009 ◽  
Vol 79 (11) ◽  
Author(s):  
Orlando L. G. Peres ◽  
A. Yu. Smirnov
1986 ◽  
Vol 34 (3) ◽  
pp. 822-825 ◽  
Author(s):  
T. K. Gaisser ◽  
J. S. O’Connell

2011 ◽  
Vol 26 (39) ◽  
pp. 2899-2915 ◽  
Author(s):  
D. JASON KOSKINEN

The IceCube neutrino observatory at the South Pole uses 1 km3 of instrumented ice to detect both astrophysical and atmospheric neutrinos. Expanding the capabilities of the original design, the DeepCore sub-array is a low-energy extension to IceCube which will collect [Formula: see text] atmospheric neutrinos a year. The high statistics sample will allow DeepCore to make neutrino oscillation measurements at higher energies and longer baselines than current experiments. The first successful observation of neutrino induced cascades in a neutrino telescope has recently been observed in DeepCore, which upon further cultivation should help refine atmospheric neutrino flux models. Besides the fundamental neutrino physics, the low-energy reach of DeepCore, down to as low as 10 GeV, and multi-megaton effective volume will enhance indirect searches for WIMP-like dark matter. A new proposal seeking to lower the energy reach down to [Formula: see text] GeV known as the Phased IceCube Next Generation Upgrade (or PINGU) will also be described.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Angel Abusleme ◽  
Thomas Adam ◽  
Shakeel Ahmad ◽  
Rizwan Ahmed ◽  
Sebastiano Aiello ◽  
...  

AbstractAtmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3” PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region.


1988 ◽  
Vol 37 (1) ◽  
pp. 122-125 ◽  
Author(s):  
Haeshim Lee ◽  
Sidney A. Bludman

2021 ◽  
Vol 16 (11) ◽  
pp. C11010
Author(s):  
V. Pestel ◽  
Z. Aly ◽  
L. Nauta

Abstract ORCA, Oscillation Research with Cosmics in the Abyss, is the low energy KM3NeT neutrino underwater detector, located in the French Mediterranean Sea. It comprises a dense array of optical modules designed to detect Cherenkov light emitted from charged particles resulting from neutrino interactions in the vicinity of the detector. Its main physics goal is the determination of the neutrino mass hierarchy by quantifying the matter-induced effect on the oscillation probabilities of atmospheric neutrinos in the energy range, 3–50 GeV, where the effects of neutrino oscillation phenomena are dominant. In 2019, four detection units were operational. Two more had been added in early 2020. This work presents an overview of the detector performance in the 2019 configuration, as well as its sensitivity to neutrino oscillations.


2010 ◽  
Author(s):  
Orlando L. G. Peres ◽  
Daniel Kaplan ◽  
Maury Goodman ◽  
Zack Sullivan

Sign in / Sign up

Export Citation Format

Share Document