Quantitative Evaluation of Spatial Coherence of the Electron Beam from Low Temperature Field Emitters

2004 ◽  
Vol 92 (24) ◽  
Author(s):  
B. Cho ◽  
T. Ichimura ◽  
R. Shimizu ◽  
C. Oshima
1992 ◽  
Vol 114 (1) ◽  
pp. 264-270 ◽  
Author(s):  
M. I. Flik ◽  
K. E. Goodson

The absorption of an electron beam in a superconducting microbridge reduces its critical current, the maximum d-c electric current it can carry without resistance. A two-dimensional heat conduction analysis determines numerically the temperature field in the film caused by electron-beam heating, considering the nonlinear thermal boundary resistance between film and substrate. The method of Intrinsic Thermal Stability yields the critical current for this temperature field. The critical current predictions agree with experimental data from low-temperature scanning electron microscopy (LTSEM) with superconducting lead microbridges. The method developed in this study permits the quantitative prediction of LTSEM experiments, enhancing the value of this technique for the local characterization of superconducting films.


Author(s):  
N. Tamura ◽  
T. Goto ◽  
Y. Harada

On account of its high brightness, the field emission electron source has the advantage that it provides the conventional electron microscope with highly coherent illuminating system and that it directly improves the, resolving power of the scanning electron microscope. The present authors have reported some results obtained with a 100 kV field emission electron microscope.It has been proven, furthermore, that the tungsten emitter as a temperature field emission source can be utilized with a sufficient stability under a modest vacuum of 10-8 ~ 10-9 Torr. The present paper is concerned with an extension of our study on the characteristics of the temperature field emitters.


Author(s):  
E. Völkl ◽  
L.F. Allard ◽  
B. Frost ◽  
T.A. Nolan

Off-axis electron holography has the well known ability to preserve the complex image wave within the final, recorded image. This final image described by I(x,y) = I(r) contains contributions from the image intensity of the elastically scattered electrons IeI (r) = |A(r) exp (iΦ(r)) |, the contributions from the inelastically scattered electrons IineI (r), and the complex image wave Ψ = A(r) exp(iΦ(r)) as:(1) I(r) = IeI (r) + Iinel (r) + μ A(r) cos(2π Δk r + Φ(r))where the constant μ describes the contrast of the interference fringes which are related to the spatial coherence of the electron beam, and Φk is the resulting vector of the difference of the wavefront vectors of the two overlaping beams. Using a software package like HoloWorks, the complex image wave Ψ can be extracted.


Author(s):  
M.V. Parthasarathy ◽  
C. Daugherty

The versatility of Low Temperature Field Emission SEM (LTFESEM) for viewing frozen-hydrated biological specimens, and the high resolutions that can be obtained with such instruments have been well documented. Studies done with LTFESEM have been usually limited to the viewing of small organisms, organs, cells, and organelles, or viewing such specimens after fracturing them.We use a Hitachi 4500 FESEM equipped with a recently developed BAL-TEC SCE 020 cryopreparation/transfer device for our LTFESEM studies. The SCE 020 is similar in design to the older SCU 020 except that instead of having a dedicated stage, the SCE 020 has a detachable cold stage that mounts on to the FESEM stage when needed. Since the SCE 020 has a precisely controlled lock manipulator for transferring the specimen table from the cryopreparation chamber to the cold stage in the FESEM, and also has a motor driven microtome for precise control of specimen fracture, we have explored the feasibility of using the LTFESEM for multiple-fracture studies of the same sample.


2015 ◽  
Vol 233-234 ◽  
pp. 133-136 ◽  
Author(s):  
Leonard Bezmaternykh ◽  
Evgeniya Moshkina ◽  
Evgeniy Eremin ◽  
Maxim Molokeev ◽  
Nikita Volkov ◽  
...  

Temperature-field and orientational magnetization dependences of single crystals were measured. Both samples demonstrate significant field-depending temperature hysteresis and low-temperature counter field magnetization. The correlation of orientational dependences of these effects and magnetic anisotropy is analyzed; the role of spin-lattice interactions is discussed.


2007 ◽  
Vol 2 (3) ◽  
pp. 272-277
Author(s):  
Hidenori Mimura ◽  
Kazufumi Shiozawa ◽  
Yoichiro Neo ◽  
Morihiro Okada ◽  
Masafumi Takahasi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document