scholarly journals Chiral flat band superconductivity from symmetry-protected three-band crossings

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Yu-Ping Lin
Keyword(s):  
2020 ◽  
Vol 13 (11) ◽  
pp. 111006
Author(s):  
Li-Chuan Sun ◽  
Chih-Yang Lin ◽  
Po-Hsun Chen ◽  
Tsung-Ming Tsai ◽  
Kuan-Ju Zhou ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 535
Author(s):  
Antonia Silvestri ◽  
Nicola Di Trani ◽  
Giancarlo Canavese ◽  
Paolo Motto Ros ◽  
Leonardo Iannucci ◽  
...  

Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.


2021 ◽  
Vol 103 (15) ◽  
Author(s):  
E. V. Gorbar ◽  
V. P. Gusynin ◽  
D. O. Oriekhov

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. X. M. Riberolles ◽  
T. V. Trevisan ◽  
B. Kuthanazhi ◽  
T. W. Heitmann ◽  
F. Ye ◽  
...  

AbstractKnowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn2As2 is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn2As2 actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180∘ rotation and time-reversal symmetries: $${C}_{2}\times {\mathcal{T}}={2}^{\prime}$$ C 2 × T = 2 ′ . Surfaces protected by $${2}^{\prime}$$ 2 ′ are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of μ0H ≈ 1 to 2 T can tune between gapless and gapped surface states.


2020 ◽  
Vol 102 (23) ◽  
Author(s):  
Tianle Wang ◽  
Nick Bultinck ◽  
Michael P. Zaletel

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Mi-Young Choi ◽  
Warren E. Pickett ◽  
Kwan-Woo Lee
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Libo Zhang ◽  
Zhiqingzi Chen ◽  
Kaixuan Zhang ◽  
Lin Wang ◽  
Huang Xu ◽  
...  

AbstractThe advent of topological semimetals enables the exploitation of symmetry-protected topological phenomena and quantized transport. Here, we present homogeneous rectifiers, converting high-frequency electromagnetic energy into direct current, based on low-energy Dirac fermions of topological semimetal-NiTe2, with state-of-the-art efficiency already in the first implementation. Explicitly, these devices display room-temperature photosensitivity as high as 251 mA W−1 at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of 22, originating from the interplay between the spin-polarized surface and bulk states. Device performances in terms of broadband operation, high dynamic range, as well as their high sensitivity, validate the immense potential and unique advantages associated to the control of nonequilibrium gapless topological states via built-in electric field, electromagnetic polarization and symmetry breaking in topological semimetals. These findings pave the way for the exploitation of topological phase of matter for high-frequency operations in polarization-sensitive sensing, communications and imaging.


Sign in / Sign up

Export Citation Format

Share Document