(μ-1,2-Dimethoxyethane-κ2O:O′)bis[(1,2-dimethoxyethane-κ2O,O′)tris(1,1,1,5,5,5-hexafluoro-4-oxopent-2-en-2-olato-κ2O,O′)cerium(III)]

2012 ◽  
Vol 68 (4) ◽  
pp. m100-m103 ◽  
Author(s):  
Elisabeth M. Fatila ◽  
Michael C. Jennings ◽  
Alan Lough ◽  
Kathryn E. Preuss

A previous analysis [Fatilaet al.(2012).Dalton Trans.41, 1352–1362] of the title complex, [Ce2(C5HF6O2)6(C4H10O2)3], had identified it as Ce(hfac)3(dme)1.5according to the1H NMR integration [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate (1,1,1,5,5,5-hexafluoro-4-oxopent-2-en-2-olate) and dme = 1,2-dimethoxyethane]; however, it was not possible to determine the coordination environment unambiguously. The structural data presented here reveal that the complex is a binuclear species located on a crystallographic inversion center. Each CeIIIion is coordinated to three hfac ligands, one bidentate dme ligand and one monodentate (bridging) dme ligand, thus giving a coordination number of nine (CN = 9) to each CeIIIion. The atoms of the bridging dme ligand are unequally disordered over two sets of sites. In addition, in two of the –CF3groups, the F atoms are rotationally disordered over two sets of sites. This is the first crystal structure of a binuclear lanthanide β-diketonate with a bridging dme ligand.

2017 ◽  
Vol 73 (11) ◽  
pp. 1612-1615
Author(s):  
Delia Bautista ◽  
Sergio J. Benitez-Benitez

The binuclear title complex, di-μ-iodido-bis({2-[(benzylamino-κN)methyl]phenyl-κC1}palladium(II)), [Pd2I2(C14H14N)2], was prepared by reaction of [Pd{C6H4(CH2NHCH2Ph)-2}(μ-OAc)]2with NaI. It crystallizes with one discrete molecule in the asymmetric unit. The molecule presents an iodide-bridged dimeric structure with acisoidarrangement with respect to theC,N-cyclopalladated ligands. Both PdIIatoms have a slightly distorted square-planar coordination environment. Weak intermolecular contacts of the type C—H...Pd seem to have a significant influence on the arrangement of the molecules along thebaxis in the crystal.


Author(s):  
Lin Chen ◽  
Gan Ren ◽  
Yakun Guo ◽  
Ge Sang

The mononuclear nickel title complex (acetonitrile-κN){N-benzyl-N,N′,N′-tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine}nickel(II) bis(tetrafluoridoborate), [Ni(C30H35N5)(CH3CN)](BF4)2, was prepared from the reaction of Ni(BF4)2·6H2O withN-benzyl-N,N′,N′-tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine (bztmpen) in acetonitrile at room temperature. With an open site occupied by the acetonitrile molecule, the nickel(II) atom is chelated by five N-atom sites from the ligand and one N atom from the ligand, showing an overall octahedral coordination environment. Compared with analogues where the 6–methyl substituent is absent, the bond length around the Ni2+cation are evidently longer. Upon reductive dissociation of the acetronitrile molecule, the title complex has an open site for a catalytic reaction. The title complex has two redox couples at −1.50 and −1.80 V (versus Fc+/0) based on nickel. The F atoms of the two BF4−counter-anions are split into two groups and the occupancy ratios refined to 0.611 (18):0.389 (18) and 0.71 (2):0.29 (2).


2017 ◽  
Vol 73 (9) ◽  
pp. 1302-1304 ◽  
Author(s):  
Hicham El Hamdani ◽  
Mohammed El Amane ◽  
Carine Duhayon

The title complex, [Co(C7H7N4O2)2(H2O)4], comprises mononuclear molecules consisting of a CoIIion, two deprotonated theophylline ligands (systematic name: 1,3-dimethyl-7H-purine-2,6-dione) and four coordinating water molecules. The CoIIatom lies on an inversion centre and has a slightly distorted octahedral coordination environment, with two N atoms of twotrans-oriented theophylline ligands and the O atoms of four water molecules. An intramolecular hydrogen bond stabilizes this conformation. A three-dimensional supramolecular network structure is formed by intermolecular O—H...O and O—H...N hydrogen bonds.


1983 ◽  
Vol 36 (3) ◽  
pp. 477 ◽  
Author(s):  
DL Kepert ◽  
JM Patrick ◽  
AH White

The crystal structure of the title compound [EuCl2(OH2)2]Cl ('europium trichloride hexahydrate') has been redetermined from single-crystal diffractometer data at 295 K and refined to a residual of 0.040 for 1094 independent 'observed' reflections. Crystals are monoclinic, P2/n, a 9.659(3), b 6.529(2), c 7.936(4) �, β 93.67(4)�, Z 2. The europium atom lies on a crystallographic twofold axis, which passes between the two planes of a square-antiprismatic coordination environment in which the two chlorine atoms, on opposite faces, lie cis to each other. Eu-O distances range from 2.401(6) to 2.431(5) �; Eu-Cl is 2.774(2) �.


2007 ◽  
Vol 63 (11) ◽  
pp. m2668-m2668 ◽  
Author(s):  
Chang-Ju Wu ◽  
Ju-Na Chen ◽  
Jing-Min Shi

In the title complex, [Zn(C10H10N4)3](NO3)2, the six-coordinate ZnII atom lies at the intersection of three twofold axes in a slightly disorted octahedral coordination environment. The N atom of a nitrate anion is located on a threefold axis. In the crystal structure, intermolecular N—H...N and N—H...O hydrogen bonds between cations and anions form a two-dimensional network perpendicular to the c axis.


2007 ◽  
Vol 63 (11) ◽  
pp. m2824-m2824
Author(s):  
Diane Conrad ◽  
Jennifer DeCoskey ◽  
Christopher Yeisley ◽  
Matthias Zeller ◽  
Allen D. Hunter ◽  
...  

The crystal structure, electronic spectroscopy, and 1H NMR data for the title compound, [Ni(C52H44N4O8)]·0.67C7H8·1.33CH2Cl2, are reported. The compound was prepared by the reaction of nickel(II) acetate with the ligand in refluxing glacial acetic acid. The asymmetric unit consists of 1.5 nickel porphyrins, two dichloromethane molecules and one toluene molecule. One of the nickel–porphyrinate molecules is located on an inversion center and is planar in the solid state, while the other assumes a saddle-shaped geometry. In both cases, the nickel ion is four-coordinate.


2021 ◽  
Author(s):  
Maria Storm Thomsen ◽  
Ander Østergård Madsen ◽  
Thomas Just Sørensen

The structure and solid state luminescence properties of a homometallic heterotrinuclear [Eu(μO)5(OH2)3][Eu(DOTA)(H2O)]2Cl crystal was determined and was found to have two sites: a free europium(III) ion and a [Eu(DOTA)(H2O)]- complex. The trinuclear compound crystallizes in a laminar structure in triclinic space group P. The crystal structure was determined using complex data treatment due to non-merohedric twinning. Experimental data sets were recorded with large redundancy and separated according to scattering domain in order to obtain a reliable structure, which revealed the configuration of the europium(III) sites. In first site, the europium(III) 1,4,7,10-tetrazacyclododecane-1,4,7,10-tetraacetate (Eu.DOTA) complex was found to adopt a capped twisted square antiprismatic (cTSAP) conformation, where a capping water molecule increased the coordination number of the europium(III) site to nine (CN = 9). In the second site, the cationic europium(III) ion was found to be coordinated by three water molecules and five oxy groups from neighboring [Eu(DOTA)(H2O)]- complexes. The coordination geometry of this site was found to be a compressed square antiprism (SAP), and the coordination number of the europium(III) ion was found to be eight (CN = 8). A large increase in rate constant of luminescence was observed for Eu(III) in [Eu(DOTA)(H2O)]- in solid state luminescence spectroscopy measurements compared to in solution, which lead to investigations of single-crystals in deuterated media to exclude additional effects of quenching. We conclude that the most probable cause of the decrease in observed luminescence lifetimes is the high asymmetry of the coordination environment of [Eu(DOTA)(D2O)]- in the [Eu(μO)5(OD2)3][Eu(DOTA)(D2O)]2Cl crystals<br>


2020 ◽  
Vol 76 (11) ◽  
pp. 1720-1724
Author(s):  
Abigail J. Hall ◽  
Matthias Zeller ◽  
Curtis M. Zaleski

The synthesis and crystal structure of the title compound [systematic name: di-μ-acetato-tetrakis(μ4-N,2-dioxidobenzene-1-carboximidato)hexamethanoltetramanganese(III)nickel(II) methanol disolvate monohydrate], [Mn4Ni(C7H4NO3)4(C2H3O2)2(CH4O)6]·2CH4O·H2O or Ni(OAc)2[12-MCMn(III)N(shi)-4](CH3OH)6·2CH3OH·H2O, where MC is metallacrown, −OAc is acetate, and shi3− is salicylhydroximate, are reported. The macrocyclic metallacrown is positioned on an inversion center located on the NiII ion that resides in the central MC cavity. The macrocycle consists of an MnIII–N–O repeat unit that recurs four times to generate an overall square-shaped molecule. Both the NiII and MnIII ions are six-coordinate with an octahedral geometry. In addition, the MnIII ions possess an elongated Jahn–Teller distortion along the z-axis of the coordination environment. The interstitial water molecule is slightly offset from and disordered about an inversion center.


Author(s):  
Jong Won Shin ◽  
Dae-Woong Kim ◽  
Dohyun Moon

The title compound, [Ni(C6H4NO2)2(C16H38N6)], was prepared through self-assembly of a nickel(II) azamacrocyclic complex with isonicotinic acid. The NiIIatom is located on an inversion center and exhibits a distorted octahedral N4O2coordination environment, with the four secondary N atoms of the azamacrocyclic ligand in the equatorial plane [average Ni—Neq= 2.064 (11) Å] and two O atoms of monodentate isonicotinate anions in axial positions [Ni—Oax= 2.137 (1) Å]. Intramolecular N—H...O hydrogen bonds between one of the secondary amine N atoms of the azamacrocyclic ligand and the non-coordinating carboxylate O atom of the anion stabilize the molecular structure. Intermolecular N—H...N hydrogen bonds, as well as π–π interactions between neighbouring pyridine rings, give rise to the formations of supramolecular ribbons extending parallel to [001].


2015 ◽  
Vol 70 (8) ◽  
pp. 541-546 ◽  
Author(s):  
Muhammad Nawaz Tahir ◽  
Anvarhusein A. Isab ◽  
Fozia Afzal ◽  
Kashif Raza ◽  
Shah Muhammad ◽  
...  

AbstractSilver(I) complexes of thioureas and thiocyanate, [(Tu)AgSCN], [(Metu)AgSCN], [(Dmtu)AgSCN], [(Tmtu)(AgSCN)1.5], [(Imt)AgSCN], and [(Diaz)AgSCN] (where Tu = thiourea, Metu = N-methylthiourea, Dmtu = N,N′-dimethylthiourea, Tmtu = N,N,N′,N′-tetramethylthiourea, Imt = 1,3-imidazolidine-2-thione, and Diaz = 1,3-diazinane-2-thione), have been prepared and characterized by elemental analysis, IR and NMR spectroscopy, and thermal analysis. The crystal structure of one of them, [(Diaz)Ag(SCN)] (1), was determined by X-ray crystallography. The crystal structure of 1 shows that the complex exists in the form of a chain-like polymer comprising [Ag(μ2-Diaz)(μ2-SCN)] units. The silver atoms are bridged by μ2-thione sulfur atoms of Diaz and μ2-thiocyanate sulfur atoms. Thereby each silver atom adopts a distorted tetrahedral coordination environment comprising four sulfur atoms, two from thione and two from thiocyanate ligands. An upfield shift in the >C=S resonance of thiones in 13C NMR and a downfield shift in the N–H resonance in 1H NMR are consistent with the sulfur coordination to silver(I). The appearance of a band around 2100 cm–1 in the IR and a resonance around 125 ppm in the 13C NMR spectrum indicates the binding of thiocyanate to silver(I).


Sign in / Sign up

Export Citation Format

Share Document