scholarly journals 4-Chloro-2-[(2,6-diisopropylphenyl)iminomethyl]phenol

2012 ◽  
Vol 68 (6) ◽  
pp. o1721-o1721
Author(s):  
P. Balamurugan ◽  
K. Kanmani Raja ◽  
D. Easwaramoorthy ◽  
G. Chakkaravarthi ◽  
G. Rajagopal

The asymmetric unit of the title compound, C19H22ClNO, contains two independent molecules in which the dihedral angles between the aromatic rings are 76.45 (9) and 74.69 (9)°. An intramolecular O—H...N hydrogen bond occurs in each molecule. The crystal structure features weak C—H...π interactions.

2012 ◽  
Vol 68 (8) ◽  
pp. o2445-o2446 ◽  
Author(s):  
Aliakbar Dehno Khalaji ◽  
Mahsa Nikookar ◽  
Karla Fejfarová ◽  
Michal Dušek

The crystal structure of the title compound, C14H12N2O4, contains four crystallographically independent molecules in the asymmetric unit. All the molecules have similar conformations; the dihedral angles between the aromatic rings are 33.1 (1), 33.76 (9), 31.41 (9) and 32.56 (10)°. Intramolecular O—H...N hydrogen bonds formS(6) ring motifs in each molecule. In the crystal, there are two pairs of pseudo-inversion-related molecules. Along thecaxis, molecules are stacked with π–π interactions between the 2-hydroxyphenyl and 4-methoxy-2-nitrophenyl rings [centroid–centroid distances = 3.5441 (12)–3.7698 (12) Å].


Author(s):  
Md. Serajul Haque Faizi ◽  
Turganbay S. Iskenderov ◽  
Natalia O. Sharkina

The title compound, C19H16N2O, crystallized with two independent molecules (AandB) in the asymmetric unit. There is an intramolecular O—H...N hydrogen bond in each molecule with the phenol ring being inclined to the central benzene ring by 4.93 (14) and 7.12 (14)° in moleculesAandB, respectively. The conformation of the two molecules differs essentially in the orientation of the terminal aminophenyl ring with respect to the central benzene ring; this dihedral angle is 50.51 (4)° in moleculeAand 54.61 (14)° in moleculeB. The two outer aromatic rings are inclined to one another by 51.39 (14) and 49.88 (14)° in moleculesAandB, respectively. In the crystal, molecules are connected by N—H...O hydrogen bonds generating –A-B–A–B– zigzag chains extending along [010]. The chains are linkedviaC—H...π interactions involving neighbouringAmolecules, forming slabs lying parallel to (100).


2012 ◽  
Vol 68 (6) ◽  
pp. o1915-o1915
Author(s):  
P. Balamurugan ◽  
K. Kanmani Raja ◽  
I. Mohammed Bilal ◽  
G. Chakkaravarthi ◽  
G. Rajagopal

The asymmetric unit of title compound, C19H22INO, contains two independent molecules. Classical intramolecular O—H...N hydrogen bonds stabilize the molecular structures. The crystal structure is stabilized by weak intermolecular C—H...π and π–π [centroid–centroid = 3.8622 (18) Å] interactions. In both molecules, the aromatic rings are nearly perpendicular to each other [dihedral angles = 84.26 (17) and 86.69 (15)°].


2015 ◽  
Vol 71 (7) ◽  
pp. o504-o505 ◽  
Author(s):  
Chitoshi Kitamura ◽  
Sining Li ◽  
Munenori Takehara ◽  
Yoshinori Inoue ◽  
Katsuhiko Ono ◽  
...  

The asymmetric unit of the title compound, C18H16O4, contains two crystallographically independent molecules. The anthraquinone ring systems are slightly bent with dihedral angles of 2.33 (8) and 13.31 (9)° between the two terminal benzene rings. In the crystal, the two independent molecules adopt slipped-parallel π-overlap with an average interplanar distance of 3.45 Å, forming a dimer; the centroid–centroid distances of the π–π interactions are 3.6659 (15)–3.8987 (15) Å. The molecules are also linked by C—H...O interactions, forming a tape structure along thea-axis direction. The crystal packing is characterized by a dimer-herringbone pattern.


Author(s):  
Karthik Ananth Mani ◽  
Vijayan Viswanathan ◽  
S. Narasimhan ◽  
Devadasan Velmurugan

The asymmetric unit of the title compound, C17H17N3O2S, consists of two independent molecules,AandB, with different conformations: in moleculeA, the dihedral angles between the central benzene ring and the pendant tolyl and carbamothioylhydrazono groups are 71.12 (9) and 5.95 (8)°, respectively. The corresponding angles in moleculeBare 50.56 (12) and 26.43 (11)°, respectively. Both molecules feature an intramolecular N—H...N hydrogen bond, which closes anS(5) ring. In the crystal, molecules are linked by N—H...O, N—H...S and C—H...O hydrogen bonds, generating a three-dimensional network.


2012 ◽  
Vol 68 (6) ◽  
pp. o1674-o1674 ◽  
Author(s):  
Xin Wu ◽  
Cai-Xia Yuan ◽  
Ling Ma ◽  
Kai-Lu Zhai ◽  
Miao-Li Zhu

The asymmetric unit of the title compound, C12H13BrN4OS, contains two independent molecules in which the dihedral angles between the triazole and benzene rings are 2.9 (3) and 7.5 (3)°. The thione group is of the form R 2C=S. An intramolecular O—H...N hydrogen bond occurs in each molecule. The crystal structure features weak N—H...S interactions and π–π stacking of the benzene rings [centroid–centroid distance = 3.667 (3) Å].


IUCrData ◽  
2016 ◽  
Vol 1 (9) ◽  
Author(s):  
T. Hannah Clara ◽  
Johanan Christian Prasana ◽  
D. Reuben Jonathan ◽  
B. K. Revathi ◽  
G. Usha

The title compound, C22H19NO2, crystallizes with two independent molecules (AandB) in the asymmetric unit. The benzyloxy ring in moleculeAis disordered over two sets of sites, with a refined occupancy ratio of 0.665 (6):0.335 (6). Both molecules have anEconformation about the C=C bond of the prop-2-en-1-one unit. In the major component of moleculeA, the aminobenzene and benzyloxy rings are inclined to the central benzene ring by 20.12 (16) and 36.2 (3)°, respectively, and by 55.6 (3)° to one another. In moleculeB, the corresponding dihedral angles are 23.65 (12), 10.24 (14) and 23.07 (14)°, respectively. In the crystal, the two molecules are linked by an N—H...O hydrogen bond. TheseA–Bunits are linked by N—H...π and C—H...π interactions, forming undulating sheets parallel to theabplane.


2009 ◽  
Vol 65 (6) ◽  
pp. o1416-o1416 ◽  
Author(s):  
Jian-Cheng Zhou ◽  
Nai-Xu Li ◽  
Chuan-Ming Zhang ◽  
Zheng-Yun Zhang

The asymmetric unit of the title compound, C22H26N2O, contains three crystallographically independent molecules, in which the aromatic rings are oriented at dihedral angles of 21.74 (5), 27.59 (5) and 27.87 (5)°. Intramolecular O—H...N hydrogen bonds result in the formation of planar six-membered rings, and these are nearly coplanar with the adjacent rings. In the crystal structure, π–π contacts between the benzene rings [centroid–centroid distances = 3.989 (2), 3.802 (1) and 3.882 (1) Å] may stabilize the structure.


2014 ◽  
Vol 70 (8) ◽  
pp. o881-o882
Author(s):  
Cai-Xia Yuan ◽  
Shu-Fen Lan ◽  
Xin-Yu Liu ◽  
Miao-Li Zhu

The title compound, C11H11BrN4OS, crystallized as a racemic twin with two symmetry-independent molecules in the asymmetric unit. The dihedral angles between the benzene and triazole rings of the two independent molecules are 56.41 (18) and 54.48 (18)°. An intramolecular O—H...N hydrogen bond occurs in each molecule. In the crystal, pairs of symmetry-independent molecules are linked by pairs of almost linear N—H...S hydrogen bonds, forming cyclic dimers characterized by anR22(8) motif. There are weak π–π interactions between the benzene rings of symmetry-independent molecules, with a centroid–centroid distance of 3.874 (3) Å.


2014 ◽  
Vol 70 (10) ◽  
pp. o1136-o1137 ◽  
Author(s):  
Naresh Sharma ◽  
Sanjay Parihar ◽  
R. N. Jadeja ◽  
Rajni Kant ◽  
Vivek K. Gupta

The title compound, C18H14Cl2N2O2, crystallizes with two molecules,AandB, in the asymmetric unit. In moleculeA, the dihedral angles between the central pyrazole ring and pendant dichlorobenzene andp-tolyl rings are 2.18 (16) and 46.78 (16)°, respectively. In moleculeB, the equivalent angles are 27.45 (16) and 40.45 (18)°, respectively. Each molecule features an intramolecular O—H...O hydrogen bond, which closes anS(6) ring and moleculeAalso features a C—H...O interaction. In the crystal, weak C—H...π interactions and aromatic π–π stacking [shortest centroid–centroid separation = 3.707 (2) Å] generate a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document