scholarly journals Nested Kirkpatrick–Baez (Montel) optics for hard X-rays

2015 ◽  
Vol 48 (2) ◽  
pp. 558-564 ◽  
Author(s):  
Giacomo Resta ◽  
Boris Khaykovich ◽  
David Moncton

A comprehensive description and ray-tracing simulations are presented for symmetric nested Kirkpatrick–Baez (KB) mirrors, commonly used at synchrotrons and in commercial X-ray sources. This paper introduces an analytical procedure for determining the proper orientation between the two surfaces composing the nested KB optics. This procedure has been used to design and simulate collimating optics for a hard-X-ray inverse Compton scattering source. The resulting optical device is composed of two 12 cm-long parabolic surfaces coated with a laterally graded multilayer and is capable of collimating a 12 keV beam with a divergence of 5 mrad (FWHM) by a factor of ∼250. A description of the ray-tracing software that was developed to simulate the graded multilayer mirrors is included.

2014 ◽  
Vol 21 (6) ◽  
pp. 1327-1332 ◽  
Author(s):  
Toshiharu Fujii ◽  
Naoto Fukuyama ◽  
Chiharu Tanaka ◽  
Yoshimori Ikeya ◽  
Yoshiro Shinozaki ◽  
...  

The fundamental performance of microangiography has been evaluated using the S-band linac-based inverse-Compton scattering X-ray (iCSX) method to determine how many photons would be required to apply iCSX to human microangiography. ICSX is characterized by its quasi-monochromatic nature and small focus size which are fundamental requirements for microangiography. However, the current iCSX source does not have sufficient flux for microangiography in clinical settings. It was determined whether S-band compact linac-based iCSX can visualize small vessels of excised animal organs, and the amount of X-ray photons required for real time microangiography in clinical settings was estimated. The iCSX coupled with a high-gain avalanche rushing amorphous photoconductor camera could visualize a resolution chart with only a single iCSX pulse of ∼3 ps duration; the resolution was estimated to be ∼500 µm. The iCSX coupled with an X-ray cooled charge-coupled device image sensor camera visualized seventh-order vascular branches (80 µm in diameter) of a rabbit ear by accumulating the images for 5 and 30 min, corresponding to irradiation of 3000 and 18000 iCSX pulses, respectively. The S-band linac-based iCSX visualized microvessels by accumulating the images. An iCSX source with a photon number of 3.6 × 103–5.4 × 104times greater than that used in this study may enable visualizing microvessels of human fingertips even in clinical settings.


2019 ◽  
Vol 71 (5) ◽  
Author(s):  
Masaki Numazawa ◽  
Yuichiro Ezoe ◽  
Kumi Ishikawa ◽  
Takaya Ohashi ◽  
Yoshizumi Miyoshi ◽  
...  

Abstract We report on results of imaging and spectral studies of X-ray emission from Jupiter observed by Suzaku. In 2006, Suzaku found diffuse X-ray emission in 1–5 keV associated with Jovian inner radiation belts. It has been suggested that the emission is caused by the inverse-Compton scattering by ultra-relativistic electrons (∼50 MeV) in Jupiter’s magnetosphere. To confirm the existence of this emission and to understand its relation to the solar activity, we conducted an additional Suzaku observation in 2014 around the maximum of the 24th solar cycle. As a result, we successfully found the diffuse emission around Jupiter in 1–5 keV again, and also found point-like emission in 0.4–1 keV. The luminosity of the point-like emission, which was probably composed of solar X-ray scattering, charge exchange, or auroral bremsstrahlung emission, increased by a factor of ∼5 with respect to the findings from 2006, most likely due to an increase of the solar activity. The diffuse emission spectrum in the 1–5 keV band was well-fitted with a flat power-law function (Γ = 1.4 ± 0.1) as in the past observation, which supported the inverse-Compton scattering hypothesis. However, its spatial distribution changed from ∼12 × 4 Jovian radius (Rj) to ∼20 × 7 Rj. The luminosity of the diffuse emission increased by the smaller factor of ∼3. This indicates that the diffuse emission is not simply responding to the solar activity, which is also known to cause little effect on the distribution of high-energy electrons around Jupiter. Further sensitive study of the spatial and spectral distributions of the diffuse hard X-ray emission is important to understand how high-energy particles are accelerated in Jupiter’s magnetosphere.


2002 ◽  
Vol 199 ◽  
pp. 227-230 ◽  
Author(s):  
G. Setti ◽  
G. Brunetti ◽  
A. Comastri

We review the evidence that detectable fluxes of X-rays are produced by inverse Compton scattering of nuclear photons with the relativistic electrons in the radio lobes of strong FRII radio galaxies within the FRII-RL quasar unification scheme. We report here on the possible detection of this effect in two steep spectrum RL quasars. This may have important implications on the physics and evolution of powerful radio galaxies.


2004 ◽  
Vol 218 ◽  
pp. 267-270
Author(s):  
Matthew G. Baring

A principal candidate for quiescent non-thermal gamma-ray emission from magnetars is resonant inverse Compton scattering in the strong fields of their magnetospheres. This paper outlines expectations for such emission, formed from non-thermal electrons accelerated in a pulsar-like polar cap potential upscattering thermal X-rays from the hot stellar surface. The resultant spectra are found to be strikingly flat, with fluxes and strong pulsation that could be detectable by GLAST.


Sign in / Sign up

Export Citation Format

Share Document