Effect of the position of a methoxy substituent on the antimicrobial activity and crystal structures of 4-methyl-1,6-diphenylpyrimidine-2(1H)-selenone derivatives

2020 ◽  
Vol 76 (4) ◽  
pp. 359-366
Author(s):  
Ewa Żesławska ◽  
Izabela Korona-Głowniak ◽  
Wojciech Nitek ◽  
Waldemar Tejchman

Derivatives of pyrimidine-2(1H)-selenone are a group of compounds with very strong antimicrobial activity. In order to study the effect of the position of the methoxy substituent on biological activity, molecular geometry and intermolecular interactions in the crystal, three derivatives were prepared and evaluated with respect to their antimicrobial activities, and their crystal structures were determined by X-ray diffraction. The investigated compounds, namely, 1-(X-methoxyphenyl)-4-methyl-6-phenylpyrimidine-2(1H)-selenones (X = 2, 3 and 4 for 1, 2 and 3, respectively), C18H16N2OSe, showed very strong activity against selected strains of Gram-positive bacteria and fungi. Two compounds, 1 and 2, crystallize in the monoclinic space group P21/c, while 3 crystallizes in the space group P21/n; 1 has two molecules in the asymmetric unit and the other two (2 and 3) have one molecule. The geometries of the investigated compounds differ slightly in the mutual orientations of the aromatic and pyrimidineselenone rings. The O atom in 1 stabilizes the conformation of the molecules via intramolecular C—H...O hydrogen bonding. The packing of molecules is determined by weak C—H...N and C—H...Se intermolecular interactions and additionally in 1 and 2 by C—H...O intermolecular interactions. The introduction of the methoxy substituent results in greater selectivity of the investigated compounds.

2019 ◽  
Vol 74 (9) ◽  
pp. 649-663
Author(s):  
Ligia R. Gomes ◽  
John N. Low ◽  
Alan B. Turner ◽  
Alexander W. Nowicki ◽  
Thomas C. Baddeley ◽  
...  

AbstractThe crystal structures and Hirshfeld surface analyses of the des-A-B-aromatic steroid derivative, (3a,9b)-1,2,3a,4,5,9b-hexahydro-7-methoxy-3a-methyl-3H-benz[e]-inden-3-one (or 5-methoxy-des-A-estra-5,7,9-triene-17-one) 1, its acetohydrazide derivative, 2, and its hydrazone derivative, 3, are reported. All three compounds crystallize in chiral space groups: compounds 1 and 2 in the orthorhombic space group P212121 each with one molecule in the asymmetric unit, and compound 3 in the monoclinic space group P21 with two similar but independent molecules, Mol A and Mol B, in the asymmetric unit. Both the five-membered and six-membered non-aromatic rings in all three compounds have envelope or near envelope shapes. In compounds 2 and 3 the N=N units have (E)-arrangements. The intermolecular interactions in crystals of compound 1 are C–H · · · O hydrogen bonds and C–H · · · π interactions, in compound 2 N–H · · · O and C–H · · · O hydrogen bonds and C–H · · · π interactions are present, while in compound 3 there are just C–H · · · π interactions. An important substructure in 1 is a sheet of molecules, composed of ${\rm{R}}_6^6(44)$ rings, formed from C–H · · · O(methoxy) and C–H · · · O(carbonyl) hydrogen bonds, the molecules of which form columns linked via the B and D rings, i.e. in a head-to-tail fashion. Compound 2 is an acylhydrazonyl compound, in which the two independent molecules are linked into asymmetric dimers via strong classical N–H · · · O hydrogen bonds, with the formation of ${\rm{R}}_2^2(8)$ rings. In both 1 and 2, further intermolecular interactions result in 3-dimensional structures, while compound 3 has a 1-dimensional structure arising from C–H · · · O interactions generating spiral chains. The results have been compared with existing data.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


1990 ◽  
Vol 68 (8) ◽  
pp. 1277-1282 ◽  
Author(s):  
Ivor Wharf ◽  
Michel G. Simard ◽  
Henry Lamparski

Tetrakis(p-methylsulphonylphenyl)tin(IV) and tetrakis(p-methylsulphinylphenyl)tin(IV) n-hydrate have been prepared and their spectra (ir 1350–400 cm−1; nmr, 1H, 13C, 119Sn) and X-ray crystal structures are reported. The first compound is monoclinic, space group C2/c, Z = 4, with a = 21.589(6), b = 6.207(3), c = 22.861(11) Å, β = 93.80(3)° (22 °C); the structure was solved by the direct method and refined by full-matrix least squares calculations to R = 0.043 for 2755 observed reflections. It has 2 molecular symmetry with the methyl group and one oxygen atom completely disordered in both CH3S(O2) groups in the asymmetric unit. The second compound is tetragonal, space group P42/n, Z = 2, with a = b = 15.408(6), c = 6.379(2) Å (−100 °C); the structure was solved by the Patterson method and refined by full-matrix least squares calculations to R = 0.060 for 1209 observed reflections. It has [Formula: see text] molecular symmetry with the whole asymmetric unit disordered. Water molecules occupy positions on parallel 42 axes but molecular packing requirements prevent all sites having 100% occupancy giving n ~ 1 for the hydrate. Keywords: Tetra-aryltins, crystal structures, sulphone, sulphoxide, hydrogen-bonding.


1996 ◽  
Vol 49 (12) ◽  
pp. 1301 ◽  
Author(s):  
GW Allen ◽  
ECH Ling ◽  
LV Krippner ◽  
TW Hambley

The preparation and purification of [Pt( hpip )Cl2] and [Pd( hpip )Cl2] ( hpip = homopiperazine = 1,4-diazacycloheptane) are described. Crystal structures of [Pt( hpip )Cl2] and [Pd( hpip )Cl2] have been determined by X-ray diffraction methods and refined to R values of 0.023 (932 F) and 0.023 (948 F). The crystals of [Pt( hpip )Cl2] are orthorhombic, space group Pbcm , a 7.7019(8), b 9.8080(12), c 12.1944(14) Ǻ, and those of [Pd( hpip )Cl2] are monoclinic, space group P21/m, a 6.1001(9), b 11.527(2), c 6.458(I) Ǻ, β 106.30(2)°. The seven- membered rings of the ligands in both complexes adopt boat-like conformations in which the five- membered chelate ring has an eclipsed N-C-C-N group and the six- membered chelate ring adopts a chair conformation. Molecular mechanics methods were used to investigate whether this conformation was a crystallographic artefact but it was found to be real. An alternative conformation in which the six-membered chelate ring adopts a skew-boat conformation was also investigated. It was found to be less stable than the conformation observed in the crystal structures, but to a degree that depends on whether non-bonded interactions involving the metal atom were included or not.


1994 ◽  
Vol 49 (6) ◽  
pp. 770-772 ◽  
Author(s):  
Klaus Schulbert ◽  
Rainer Mattes

The reactions of N-substituted dithiocarbamic acid esters and nickel acetate yield, by partial degradation of the esters, the polynuclear nickel thiolato complexes cyclo-[(μ-SMe)2Ni]6, 1 and [(μ-SMe)2(Ni(MeNHCS2))2, 2. Their crystal structures have been determined. The Ni coordination spheres are comprised of four sulfur atoms in a planar arrangement. 1 is a second, highly symmetrical modification of the already known cyclic hexamer Ni6(SMe)12. In 2 two Ni(PhNHCS2) moieties are bridged to dimers by thiolato groups. Two of these dimers are connected to a tetramer by weak axial Ni-S interactions. Crystal data for 1: monoclinic, space group P21/n, a = 986.1(2), b = 1308.1(3), c = 1228.6(2) pm, β = 96.07(3)°, Z = 2, R = 0.072, Rw = 0.062, 3797 reflections. 2: orthorhombic, space group Pnma, a = 1790.0(4), b = 1806.7(4), c = 934.4(2) pm. Z = 4, R = 0.061, Rw = 0.051, 2079 reflections


Author(s):  
Vasant S. Naik ◽  
Venkataraya Shettigar ◽  
Tyler S. Berglin ◽  
Jillian S. Coburn ◽  
Jerry P. Jasinski ◽  
...  

In the molecules of the title compounds, (2E)-1-(3-bromo-thiophen-2-yl)-3-(2-methoxyphenyl)prop-2-en-1-one, C14H11BrO2S, (I), which crystallizes in the space groupP-1 with four independent molecules in the asymmetric unit (Z′ = 8), and (2E)-1-(3-bromothiophen-2-yl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one, C15H13BrO3S, (II), which crystallizes withZ′ = 8 in the space groupI2/a, the non-H atoms are nearly coplanar. The molecules of (I) pack with inversion symmetry stacked diagonally along thea-axis direction. Weak C—H...Br intramolecular interactions in each of the four molecules in the asymmetric unit are observed. In (II), weak C—H...O, bifurcated three-center intermolecular interactions forming dimers along with weak C—H...π and π–π stacking interactions are observed, linking the molecules into sheets along [001]. A weak C—H...Br intramolecular interaction is also present. There are no classical hydrogen bonds present in either structure.


1988 ◽  
Vol 43 (10) ◽  
pp. 1219-1223 ◽  
Author(s):  
Johannes Beck

PPh3Au(tolN5tol) is obtained by the reaction of PPh3Au+ClO4- with Tl(tolN5tol). It crystallizes in the monoclinic space group P21/c with the lattice parameters a = 1548.8(5), b = 1070.7(2), c = 1779.1(3) pm, β = 90.33(2)°, Z = 4. In the monomeric complex the gold atom is nearly linearcoordinated by the phosphorus atom of the PPh3 group and nitrogen atom N3 of the pentaazadienido ligand ( N3 - Au - P 178.4°). tolNN(NCH3)NNtol crystallizes in the orthorhombic space group Pccn with the lattice constants a = 2426.7(9), b = 469.3(2), c = 1195.3(4) pm. The unit cell contains four molecules, located on twofold axes. Due to the isolobality of the CH3 and the PPh3Au group, the two structures are closely related. Both contain the typical planar zig-zag chain of five nitrogen atoms with located double bonds N1-N2 and N4 - N5 (from 119.8 to 126.6 pm) and shortened single bonds N2 - N3 and N3 - N4 (132.7 to 140.0 pm).


1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


1997 ◽  
Vol 50 (9) ◽  
pp. 903 ◽  
Author(s):  
Trevor W. Hambley ◽  
Walter C. Taylor ◽  
Stephen Toth

Four novel norditerpenoids were isolated from a new encrusting sponge, conveniently labelled Aplysilla pallida. The structures of aplypallidenone (1), aplypallidoxone (2), aplypallidione (3) and aplypallidioxone (4) were elucidated by spectroscopic studies and the crystal structures of aplypallidenone and aplypallidoxone have been determined by X-ray diffraction methods. The structure of (1) was refined to a residual of 0·040 for 1665 independent observed reflections and the structure of (2) was refined to a residual of 0·031 for 1699 independent observed reflections. The crystals of (1) are orthorhombic, space group P212121, a 7·728(2), b 10·838(4), c 24·880(5) Å, Z 4. Those of (2) are monoclinic, space group C 2, a 23·927(7), b 6·674(2), c 14·033(3) Å, Z 4.


Sign in / Sign up

Export Citation Format

Share Document