Syntheses, structures and magnetic properties of two CoII/NiII isostructural coordination polymers based on an asymmetric semirigid tricarboxylate ligand

Author(s):  
Shao-Dong Li ◽  
Feng Su ◽  
Cheng-Yong Zhou ◽  
Qi-Long Hu ◽  
Ya-Qi Li ◽  
...  

Two new isostructural complexes, namely, poly[aqua[μ3-2-(4-carboxyphenoxy)terephthalato-κ3 O 1:O 4:O 4′](1,10-phenanthroline-κ2 N,N′)cobalt(II)], [Co(C15H8O7)(C12H8N2)(H2O)] n or [Co(μ3-Hcpota)(phen)(H2O)] n , I, and poly[aqua[μ3-2-(4-carboxyphenoxy)terephthalato-κ3 O 1:O 4:O 4′](1,10-phenanthroline-κ2 N,N′)nickel(II)], [Ni(C15H8O7)(C12H8N2)(H2O)] n or [Ni(μ3-Hcpota)(phen)(H2O)] n , II, have been synthesized by solvothermal reactions. Complexes I and II were fully characterized by IR spectroscopy, elemental analyses, thermogravimetric analyses, and powder and single-crystal X-ray diffraction. They both present two-dimensional structures based on [M 2(μ-COO)2]2+ (M = CoII or NiII) dinuclear metal units with a fes topology and a vertex symbol (4·82). Interestingly, the positions of the two dimeric metal motifs and the two partially deprotonated Hcpota2− ligands reproduce regular flying butterfly arrangements flipped upside down and sharing wings in the ab plane. Magnetic studies indicate antiferromagnetic interactions (J = −5.21 cm−1 for I and −11.53 cm−1 for II) in the dimeric units, with Co...Co and Ni...Ni distances of 4.397 (1) and 4.358 (1) Å, respectively, that are related to double syn–anti carboxylate bridges.

2016 ◽  
Vol 71 (8) ◽  
pp. 869-874 ◽  
Author(s):  
Gao-Feng Wang ◽  
Xiao Zhang ◽  
Shu-Wen Sun ◽  
Hong Sun ◽  
Xia Yang ◽  
...  

AbstractTwo Mn(II) complexes, {[Mn(BIPMO)2Cl2] · 2(H2O)}n (1) and {[Mn(BIPMO)2(SCN)2] · 2(CH3OH)}n (2) (BIPMO = bis(4-(1H-imidazol-1-yl)phenyl)methanone) with V-shaped BIPMO ligands, were synthesized and characterized by IR spectroscopy and elemental analyses along with their single-crystal X-ray diffraction analyses. The Mn(II) ions in 1 and 2 are both six-coordinated to four nitrogen atoms of four BIPMO ligands and two anions (Cl− for 1, and SCN− for 2) to form a distorted octahedral geometry.


2019 ◽  
Vol 72 (5) ◽  
pp. 341 ◽  
Author(s):  
Yu-Ting Yang ◽  
Chang-Zheng Tu ◽  
Xiao-Lin Xu ◽  
Li-Li Xu ◽  
Bang-Ling Yan ◽  
...  

Solvothermal reactions of 3,3′,5,5′-biphenyltetracarboxylic acid (H4BPTC) and cobalt(ii) ions in the presence of two different flexible N-donor ancillary ligands afford two novel coordination polymers, {[Co(BPTC)0.5(bix)]·H2O}n (1), {[Co(BPTC)0.5(bpp)]·3H2O}n (2) (bix=1,4-bis(imidazol-1-ylmethyl)benzene; bpp=1,3-bis(4-pyridyl)propane). Their structures have been determined by elemental analyses, IR spectra, single-crystal X-ray diffraction analyses, and powder X-ray diffraction. The pillared layered framework of 1 can be simplified to a (4,6)-connected net with a Schläfli symbol of (44·62)(44·69·82). Complex 2 manifests a bilayered structure, and can be simplified to a (4,4)-connected net with a Schläfli symbol of (55·8)(54·62). The thermal stabilities of both complexes and the magnetic behaviours of 1 are also discussed.


2017 ◽  
Vol 72 (12) ◽  
pp. 937-940 ◽  
Author(s):  
Xiao-Hong Zhu ◽  
Xiao-Chun Cheng ◽  
Yun-Hua Qian

AbstractThe neutral, four-fold protonated pyridine-3,5-dicarbox(3,5-dicarboxylatoanilide) (H4L) reacts with Mn(II) salts under hydrothermal conditions to yield a new complex: [Mn2(L)(H2O)2]·H2O (1), which has been characterized by single crystal X-ray diffraction, infrared spectroscopy, and elemental and thermogravimetric analyses. Complex 1 exhibits a binodal (4,8)-connected 3D framework with flu (412.612.84)(46)2 topology. The magnetic properties of 1 were investigated.


2021 ◽  
Vol 47 (9) ◽  
pp. 593-600
Author(s):  
A. A. Lysova ◽  
V. A. Dubskikh ◽  
K. D. Abasheeva ◽  
A. A. Vasileva ◽  
D. G. Samsonenko ◽  
...  

Abstract Three new metal−organic frameworks based on scandium(III) cations and 2,5-thiophenedicarboxylic acid (H2Tdc) are synthesized: [Sc(Tdc)(OH)]·1.2DMF (I), [Sc(Tdc)(OH)]·2/3DMF (II), and (Me2NH2)[Sc3(Tdc)4(OH)2]·DMF (III) (DMF is N,N-dimethylformamide). The structures of the compounds are determined by single-crystal X-ray structure analysis (CIF file CCDC nos. 2067819 (I), 2067820 (II), and 2067821 (III)). The chemical and phase purity of compound I is proved by elemental analysis, thermogravimetry, X-ray diffraction analysis, and IR spectroscopy.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5400
Author(s):  
Roman D. Marchenko ◽  
Taisiya S. Sukhikh ◽  
Alexey A. Ryadun ◽  
Andrei S. Potapov

Coordination polymers with a new rigid ligand 1,3-bis(1,2,4-triazol-1-yl)adamantane (L) were prepared by its reaction with cadmium(II) or silver(I) nitrates. Crystal structure of the coordination polymers was determined using single-crystal X-ray diffraction analysis. Silver formed two-dimensional coordination polymer [Ag(L)NO3]n, in which metal ions are linked by 1,3-bis(1,2,4-triazol-1-yl)adamantane ligands, coordinated by nitrogen atoms at positions 2 and 4 of 1,2,4-triazole rings. Layers of the coordination polymer consist of rare 18- and 30-membered {Ag2L2} and {Ag4L4} metallocycles. Cadmium(II) nitrate formed two kinds of one-dimensional coordination polymers depending on the metal-to-ligand ratio used in the synthesis. Coordination polymer [Cd(L)2(NO3)2]n was obtained in case of a 1:2 M:L ratio, while for M:L = 2:1 product {[Cd(L)(NO3)2(CH3OH)]·0.5CH3OH}n was isolated. All coordination polymers demonstrated ligand-centered emission near 450 nm upon excitation at 370 nm.


2020 ◽  
Vol 76 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Yating Chen ◽  
Shaonan Zhang ◽  
Yu Xiao ◽  
Shuhua Zhang

Three novel complexes, namely, penta-μ-acetato-bis(μ2-2-{[2-(6-chloropyridin-2-yl)hydrazinylidene]methyl}-6-methoxyphenolato)-μ-formato-tetramanganese(II), [Mn4(C13H11ClN3O2)2(C2H3O2)5.168(CHO2)0.832], 1, hexa-μ2-acetato-bis(μ2-2-{[2-(6-bromopyridin-2-yl)hydrazinylidene]methyl}-6-methoxyphenolato)tetramanganese(II), [Mn4(C13H11BrN3O2)2(C2H3O2)6], 2, and catena-poly[[μ2-acetato-acetatoaqua(μ2-2-{[2-(6-chloropyridin-2-yl)hydrazinylidene]methyl}-6-methoxyphenolato)dimanganese(II)]-μ2-acetato], [Mn2(C13H11ClN3O2)(C2H3O2)3(H2O)] n , 3, have been synthesized using solvothermal methods. Complexes 1–3 were characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. Complexes 1 and 2 are tetranuclear manganese clusters, while complex 3 has a one-dimensional network based on tetranuclear Mn4(L 1)2(CH3COO)6(H2O)2 building units (L 1 is 2-{[2-(6-chloropyridin-2-yl)hydrazinylidene]methyl}-6-methoxyphenolate). Magnetic studies reveal that complexes 1–3 display dominant antiferromagnetic interactions between MnII ions through μ2-O bridges. In addition, 1–3 also display favourable electrochemiluminescence (ECL) properties.


Synthesis ◽  
2020 ◽  
Vol 52 (07) ◽  
pp. 1025-1034 ◽  
Author(s):  
Marvin Linnemannstöns ◽  
Beate Neumann ◽  
Hans-Georg Stammler ◽  
Norbert W. Mitzel

Starting from trichloro(phenylethyl)silane, six differently fluorinated triaryl(phenylethyl)silanes were synthesized by salt elimination reactions and their structures were determined by X-ray diffraction analysis. Tris(pentafluorophenyl)(phenylethyl)silane reveals a folded structure due to intramolecular π-stacking interactions, while those with a lower degree of fluorination show either intermolecular π-stacking or no interplay between the aryl groups. A similar folded structure was observed for (4-methylphenethyl)tris(pentafluorophenyl)silane and [2-(naphth-2-yl)ethyl]tris(pentafluorophenyl)silane, both generated from the corresponding trichlorosilanes. In contrast, the inversely fluorinated [2-(pentafluorophenyl)ethyl]triphenylsilane only revealed intermolecular π-stacking interactions. Compounds with tetrafluoropyridyl substituents behave differently; with these compounds, π-stacking is only observed between the fluorinated units. All compounds were analyzed by NMR and IR spectroscopy, elemental analyses and single-crystal X-ray diffraction, and found to have strong H/C/N/F···F and N···C contacts.


2015 ◽  
Vol 71 (7) ◽  
pp. 618-622 ◽  
Author(s):  
Shao-Ming Ying ◽  
Jing-Jing Ru ◽  
Wu-Kui Luo

Metal–organic frameworks (MOFs) have potentially useful applications and an intriguing variety of architectures and topologies. Two homochiral coordination polymers have been synthesized by the hydrothermal method, namely poly[(μ-N-benzyl-L-phenylalaninato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C16H16NO2)(HCOO)]n, (1), and poly[(μ-N-benzyl-L-leucinato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C13H18NO2)(HCOO)]n, (2), and studied by single-crystal X-ray diffraction, elemental analyses, IR spectroscopy and fluorescence spectroscopy. Compounds (1) and (2) each have a two-dimensional layer structure, with the benzyl or isobutyl groups of the ligands directed towards the interlayer interface. Photoluminescence investigations show that both (1) and (2) display a strong emission in the blue region.


2019 ◽  
Vol 74 (3) ◽  
pp. 261-265 ◽  
Author(s):  
Gao-Feng Wang ◽  
Shu-Wen Sun ◽  
Wei-Bing Wang ◽  
Hong Sun ◽  
Shao-Fei Song

AbstractTwo coordination polymers, {[Co(bipmo)(tbip)]·3H2O}n (1) and {[Cd(bipmo)(tbip)]·3H2O}n (2) (bipmo=bis(4-(1H-imidazol-1-yl)phenyl)methanone, H2tbip=5-tert-butylisophthalic acid), were synthesized by solvothermal methods and structurally characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction data indicate that the solid state structures of 1 and 2 consist of metal-aromatic carboxylate layers, which are pillared by weak interactions to generate a three-dimensional network. The topological structures of 1 and 2 are uninodal nets based on 3-connected nodes with the Schläfli symbol of {63}.


CrystEngComm ◽  
2015 ◽  
Vol 17 (3) ◽  
pp. 653-664 ◽  
Author(s):  
Lei-Lei Liu ◽  
Cai-Xia Yu ◽  
Ya-Ru Li ◽  
Jing-Jing Han ◽  
Feng-Ji Ma ◽  
...  

Solvothermal reactions of Cd(OAc)2·2H2O with 2,2′-azodibenzoic acid and five positional isomeric N-donor bipyridyl benzene ligands in MeOH/H2O at 170 °C gave rise to five coordination polymers. Complexes 1–5 were characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document