scholarly journals The State of the Canadian Macromolecular Crystallography Facility

2014 ◽  
Vol 70 (a1) ◽  
pp. C1735-C1735
Author(s):  
James Gorin ◽  
Shaunivan Labiuk ◽  
Julien Cotelesage ◽  
Kathryn Janzen ◽  
Michel Fodje ◽  
...  

The Canadian Macromolecular Crystallography Facility (CMCF) at the Canadian Light Source consists of two macromolecular crystallography beamlines for structure determination using x-ray diffraction. The equipment at the CMCF beamlines have undergone or will undergo changes and improvements to better meet the needs of the most challenging experiments users may present. Among these improvements are: 1) Automounter improvements; 2) Better goniometry on 08ID-1 with the addition of a Huber air-bearing goniometer; 3) Added beam size capabilities on 08ID-1 with the addition of a multiple beam defining aperture holder; 4) XAFS capability on 08B1-1; 5) Improved low energy S-SAD data collection with the addition of a Helium path; 6) Improvements to the data collection and data management software; 7) A vacuum path for scattering experiments with detector distances up to 1 m; 8) A comprehensive beamline upgrade project on the 08ID-1 beamline; and 9) Service crystallography services.

2016 ◽  
Vol 72 (4) ◽  
pp. 454-466 ◽  
Author(s):  
Ulrich Zander ◽  
Guillaume Hoffmann ◽  
Irina Cornaciu ◽  
Jean-Pierre Marquette ◽  
Gergely Papp ◽  
...  

Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities.


2013 ◽  
Vol 46 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Scott Classen ◽  
Greg L. Hura ◽  
James M. Holton ◽  
Robert P. Rambo ◽  
Ivan Rodic ◽  
...  

The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B4C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources.


2013 ◽  
Vol 46 (4) ◽  
pp. 1225-1230 ◽  
Author(s):  
Oliver B. Zeldin ◽  
Markus Gerstel ◽  
Elspeth F. Garman

RADDOSE-3D allows the macroscopic modelling of an X-ray diffraction experiment for the purpose of better predicting radiation-damage progression. The distribution of dose within the crystal volume is calculated for a number of iterations in small angular steps across one or more data collection wedges, providing a time-resolved picture of the dose state of the crystal. The code is highly modular so that future contributions from the community can be easily integrated into it, in particular to incorporate online methods for determining the shape of macromolecular crystals and better protocols for imaging real experimental X-ray beam profiles.


2007 ◽  
Vol 29 (4) ◽  
pp. 32-35
Author(s):  
Armin Wagner

X-ray diffraction is the method of choice to determine structural information from biological mac romolecules to atomic resolution. This technique depends on the availability of single crystals of protein, which are notoriously difficult to produce. It can take months or even years to find crystal lization conditions capable of producing crystals with sufficient diffraction quality. During the last few years the field of MX (macromolecular crystallography) has undergone considerable change and most of the steps from protein expression to structure solution have been automated, speeding up the process significantly. Facilities such as Diamond Light Source, the new UK synchrotron radia tion source in Oxfordshire, have been developed to incorporate new automation technologies and Diamond will provide an important user resource for XRD (X-ray diffraction) experiments on crystals of biological macromolecules. Furthermore, in collaboration with Professor So Iwata (Imperial College and Diamond Light Source) and funded by the Wellcome Trust, Diamond Light Source is developing a laboratory dedicated specifically to solving the structure of membrane proteins, the crystallization of which poses a particular problem to the crystallographer.


2020 ◽  
Author(s):  
Zhehao Huang ◽  
meng ge ◽  
Francesco Carraro ◽  
Christian Doonan ◽  
paolo falcaro ◽  
...  

Many framework materials such as metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are synthesized as polycrystalline powders, which are too small for structure determination by single crystal X-ray diffraction (SCXRD). Here, we show that a three-dimensional (3D) electron diffraction method, namely continuous rotation electron diffraction (cRED), can be used for <i>ab initio</i> structure determination of such materials. As an example, we present a complete structural analysis of a biocomposite, denoted BSA@ZIF-C, where Bovin Serum Albumin (BSA) was encapsulated in a zeolitic imidazolate framework (ZIF). Low electron dose was combined with ultrafast cRED data collection to minimize electron beam damage of the sample. We demonstrate that the atomic structure obtained by cRED is as reliable and accurate as that obtained by single crystal X-ray diffraction. The high accuracy and fast data collection open new opportunities for investigation of cooperative phenomena in framework structures at atomic level.


2014 ◽  
Vol 70 (a1) ◽  
pp. C351-C351
Author(s):  
Anna Warren ◽  
Wes Armour ◽  
Danny Axford ◽  
Mark Basham ◽  
Thomas Connolley ◽  
...  

The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallise on much smaller scales and are frequently mounted in opaque or highly refractive materials.[1,2] It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this poster the use of X-ray microradiography and microtomography is reported as a tool for crystal visualisation, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals, and crystals mounted in opaque materials such as lipidic cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to a diffraction grid scan. However, for sample location and shape estimation alone, just a few radiographic projections may be required; hence reducing the dose the crystals will be exposed to prior to the diffraction data collection.[3]


IUCrJ ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 267-282 ◽  
Author(s):  
Yifeng Yun ◽  
Xiaodong Zou ◽  
Sven Hovmöller ◽  
Wei Wan

Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.


Crystals ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 336 ◽  
Author(s):  
David . Allan ◽  
Harriott Nowell ◽  
Sarah Barnett ◽  
Mark Warren ◽  
Adrian Wilcox ◽  
...  

2013 ◽  
Vol 69 (7) ◽  
pp. 1252-1259 ◽  
Author(s):  
Anna J. Warren ◽  
Wes Armour ◽  
Danny Axford ◽  
Mark Basham ◽  
Thomas Connolley ◽  
...  

The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.


Sign in / Sign up

Export Citation Format

Share Document