A combined model of electron density and lattice dynamics refined against elastic diffraction data. Thermodynamic properties of crystalline L-alanine

2020 ◽  
Vol 76 (1) ◽  
pp. 32-44 ◽  
Author(s):  
Ioana Sovago ◽  
Anna A. Hoser ◽  
Anders Ø. Madsen

Thermodynamic stability is an essential property of crystalline materials, and its accurate calculation requires a reliable description of the thermal motion – phonons – in the crystal. Such information can be obtained from periodic density functional theory (DFT) calculations, but these are costly and in some cases insufficiently accurate for molecular crystals. This deficiency is addressed here by refining a lattice-dynamics model, derived from DFT calculations, against accurate high-resolution X-ray diffraction data. For the first time, a normal-mode refinement is combined with the refinement of aspherical atomic form factors, allowing a comprehensive description and physically meaningful deconvolution of thermal motion and static charge density in the crystal. The small and well diffracting L-alanine system was used. Different lattice-dynamics models, with or without phonon dispersion, and derived from different levels of theory, were tested, and models using spherical and aspherical form factors were compared. The refinements indicate that the vibrational information content in the 23 K data is too small to study lattice dynamics, whereas the 123 K data appear to hold information on the acoustic and lowest-frequency optical phonons. These normal-mode models show slightly larger refinement residuals than their counterparts using atomic displacement parameters, and these features are not removed by considering phonon dispersion in the model. The models refined against the 123 K data, regardless of their sophistication, give calculated heat capacities for L-alanine within less than 1 cal mol−1 K−1 of the calorimetric measurements, in the temperature range 10–300 K. The findings show that the normal-mode refinement method can be combined with an elaborate description of the electron density. It appears to be a promising technique for free-energy determination for crystalline materials at the expense of performing a single-crystal elastic X-ray diffraction determination combined with periodic DFT calculations.

2021 ◽  
Author(s):  
Anna Agnieszka Hoser ◽  
Marcin Sztylko ◽  
Damian Trzybiński ◽  
Anders Østergaard Madsen

A framework for estimation of thermodynamic properties for molecular crystals via refinement of frequencies from DFT calculations against X-ray diffraction data is presented. The framework provides an efficient approach to...


Author(s):  
Anatoly A. Udovenko ◽  
Alexander A. Karabtsov ◽  
Natalia M. Laptash

A classical elpasolite-type structure is considered with respect to dynamically disordered ammonium fluoro-(oxofluoro-)metallates. Single-crystal X-ray diffraction data from high quality (NH4)3HfF7 and (NH4)3Ti(O2)F5 samples enabled the refinement of the ligand and cationic positions in the cubic Fm \bar 3 m (Z = 4) structure. Electron-density atomic profiles show that the ligand atoms are distributed in a mixed (split) position instead of 24e. One of the ammonium groups is disordered near 8c so that its central atom (N1) forms a tetrahedron with vertexes in 32f. However, a center of another group (N2) remains in the 4b site, whereas its H atoms (H2) occupy the 96k positions instead of 24e and, together with the H3 atom in the 32f position, they form eight spatial orientations of the ammonium group. It is a common feature of all ammonium fluoroelpasolites with orientational disorder of structural units of a dynamic nature.


2005 ◽  
Vol 38 (1) ◽  
pp. 158-167 ◽  
Author(s):  
Husin Sitepu ◽  
Brian H. O'Connor ◽  
Deyu Li

Preferred crystallographic orientation,i.e.texture in crystalline materials powder diffraction data, can cause serious systematic errors in phase composition analysis and also in crystal structure determination. The March model [Dollase (1986).J. Appl. Cryst.19, 267–272] has been used widely in Rietveld refinement for correcting powder diffraction intensities with respect to the effects of preferred orientation. In the present study, a comparative evaluation of the March model and the generalized spherical harmonic [Von Dreele (1997).J. Appl. Cryst.30, 517–525] description for preferred orientation was performed with X-ray powder diffraction data for molybdite (MoO3) and calcite (CaCO3) powders uniaxially pressed at five different pressures. Additional molybdite and calcite powders, to which 50% by weight silica gel had been added, were prepared to extend the range of preferred orientations considered. The patterns were analyzed initially assuming random orientation of the crystallites and subsequently the March model was used to correct the preferred orientation. The refinement results were compared with parallel refinements conducted with the generalized spherical harmonic [Sitepu (2002).J. Appl. Cryst.35,274–277]. The results obtained show that the generalized spherical harmonic description generally provided superior figures-of-merit compared with the March model results.


Author(s):  
P. Fuhrmann ◽  
T. Koritsánszky ◽  
P. Luger

AbstractTopological properties and the Laplacian function of the electron density of 1,2,4-triazole have been determined from X-ray diffraction data collected at 15 K. 1,2,4-Triazole, C


1993 ◽  
Vol 48 (14) ◽  
pp. 10638-10641 ◽  
Author(s):  
J. D. Sullivan ◽  
P. Bordet ◽  
M. Marezio ◽  
K. Takenaka ◽  
S. Uchida

2014 ◽  
Vol 70 (5) ◽  
pp. 1491-1497 ◽  
Author(s):  
Jimin Wang ◽  
Richard A. Wing

Overwhelming evidence exists to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps improve the refinement of atomic models by imposing strong constraints on individual and overall temperatureBfactors and thus the quality of crystal structures. Some researchers consider these data to be of little value and opt to discard them during data processing, particularly at medium and low resolution, at which individualBfactors of atomic models cannot be refined. Here, new evidence is provided to show that the inclusion of these data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry (NCS) averaging. Using electron-density correlation coefficients as criteria, the resolution of data has successfully been extended from 3.1 to 2.5 Å resolution with redundancy-independent mergingRfactors from below 100% to about 310%. It is further demonstrated that phase information can be fully extracted from observed amplitudes throughde novoNCS averaging. Averaging starts with uniform density inside double-shelled spherical masks and NCS matrices that are derived from bound heavy-atom clusters at the vertices of cuboctahedrally symmetric protein particles.


2011 ◽  
Vol 106 (3) ◽  
pp. 489-499 ◽  
Author(s):  
M. Herzog ◽  
D. Schick ◽  
P. Gaal ◽  
R. Shayduk ◽  
C. Korff Schmising ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document