scholarly journals Finite extinction for a doubly nonlinear parabolic equation of fast diffusion type

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Md Abu Hanif Sarkar

PurposeThe purpose of this paper is to find a doubly nonlinear parabolic equation of fast diffusion in a bounded domain.Design/methodology/approachFor positive and bounded initial data, the authors study the initial zero-boundary value problem.FindingsThe findings of this study showed the complete extinction of a continuous weak solution at a finite time.Originality/valueThe extinction time is studied earlier but for the Laplacian case. The authors presented the finite extinction time for the case of p-Laplacian.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hui Wang ◽  
Caisheng Chen

AbstractIn this paper, we are interested in $L^{\infty }$ L ∞ decay estimates of weak solutions for the doubly nonlinear parabolic equation and the degenerate evolution m-Laplacian equation not in the divergence form. By a modified Moser’s technique we obtain $L^{\infty }$ L ∞ decay estimates of weak solutiona.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Hamid El Bahja ◽  
Abderrahmane El Hachimi ◽  
Ali Alami Idrissi

This paper studies a time discretization for a doubly nonlinear parabolic equation related to the p(x)-Laplacian by using Euler-forward scheme. We investigate existence, uniqueness, and stability questions and prove existence of the global compact attractor.


Author(s):  
Ugo Gianazza ◽  
Naian Liao

AbstractLocally bounded, local weak solutions to a doubly nonlinear parabolic equation, which models the multi-phase transition of a material, is shown to be locally continuous. Moreover, an explicit modulus of continuity is given. The effect of the p-Laplacian type diffusion is also considered.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shun Uchida

<p style='text-indent:20px;'>In this paper, we consider a doubly nonlinear parabolic equation <inline-formula><tex-math id="M2">\begin{document}$ \partial _t \beta (u) - \nabla \cdot \alpha (x , \nabla u) \ni f $\end{document}</tex-math></inline-formula> with the homogeneous Dirichlet boundary condition in a bounded domain, where <inline-formula><tex-math id="M3">\begin{document}$ \beta : \mathbb{R} \to 2 ^{ \mathbb{R} } $\end{document}</tex-math></inline-formula> is a maximal monotone graph satisfying <inline-formula><tex-math id="M4">\begin{document}$ 0 \in \beta (0) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \nabla \cdot \alpha (x , \nabla u ) $\end{document}</tex-math></inline-formula> stands for a generalized <inline-formula><tex-math id="M6">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian. Existence of solution to the initial boundary value problem of this equation has been studied in an enormous number of papers for the case where single-valuedness, coerciveness, or some growth condition is imposed on <inline-formula><tex-math id="M7">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>. However, there are a few results for the case where such assumptions are removed and it is difficult to construct an abstract theory which covers the case for <inline-formula><tex-math id="M8">\begin{document}$ 1 &lt; p &lt; 2 $\end{document}</tex-math></inline-formula>. Main purpose of this paper is to show the solvability of the initial boundary value problem for any <inline-formula><tex-math id="M9">\begin{document}$ p \in (1, \infty ) $\end{document}</tex-math></inline-formula> without any conditions for <inline-formula><tex-math id="M10">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> except <inline-formula><tex-math id="M11">\begin{document}$ 0 \in \beta (0) $\end{document}</tex-math></inline-formula>. We also discuss the uniqueness of solution by using properties of entropy solution.</p>


2011 ◽  
Vol 4 (1) ◽  
pp. 51-66
Author(s):  
Laurence Cherfils ◽  
◽  
Stefania Gatti ◽  
Alain Miranville ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document