Adaptive parameter inversion analysis method of rockfill dam based on harmony search algorithm and mixed multi-output relevance vector machine

2020 ◽  
Vol 37 (7) ◽  
pp. 2229-2249
Author(s):  
Chunhui Ma ◽  
Jie Yang ◽  
Lin Cheng ◽  
Li Ran

Purpose To improve the efficiency, accuracy and adaptivity of the parameter inversion analysis method of a rockfill dam, this study aims to establish an adaptive model based on a harmony search algorithm (HS) and a mixed multi-output relevance vector machine (MMRVM). Design/methodology/approach By introducing the mixed kernel function, the MMRVM can accurately simulate the nonlinear relationship between the material parameters and dam settlement. Therefore, the finite element method with time consumption can be replaced by the MMRVM. Because of its excellent global search capability, the HS is used to optimize the kernel parameters of the MMRVM and the material parameters of a rockfill dam. Findings Because the parameters of the HS and the variation range of the MMRVM parameters are relatively fixed, the HS-MMRVM can imbue the inversion analysis with adaptivity; the number of observation points required and the robustness of the HS-MMRVM are analyzed. An application example involving a concrete-faced rockfill dam shows that the HS-MMRVM exhibits high accuracy and high speed in the parameter inversion analysis of static and creep constitutive models. Practical implications The applicability of the HS-MMRVM in hydraulic engineering is proved in this paper, which should further validate in inversion problems of other fields. Originality/value An adaptive inversion analysis model is established to avoid the parameters of traditional methods that need to be set by humans, which strongly affect the inversion analysis results. By introducing the mixed kernel function, the MMRVM can accurately simulate the nonlinear relationship between the material parameters and dam settlement. To reduce the data dimensions and verify the model’s robustness, the number of observation points required for inversion analysis and the acceptable degree of noise are determined. The confidence interval is built to monitor dam settlement and provide the foundation for dam monitoring and reservoir operation management.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changpu Ma ◽  
Binghai Zhou

PurposeThe use of multiple-capacity rail-guided vehicles (RGVs) has made automated storage and retrieval system (AS/RS) optimization more complex. The paper performs dual-RGV scheduling considering loading/unloading and collision-avoidance constraints simultaneously as these issues have only been considered separately in the previous literature.Design/methodology/approachThis paper proposes a novel model for dual-RGV scheduling with two-sided loading/unloading operations and collision-avoidance constraints. To solve the proposed problem, a hybrid harmony search algorithm (HHSA) is developed. To enhance its performance, a descent-based local search with eight move operators is introduced.FindingsA group of problem instances at different scales are optimized with the proposed algorithm and the results are compared with those of two other high-performance methods. The results demonstrate that the proposed method can efficiently solve realistically sized cases of dual multi-capacity RGV scheduling problems in AS/RSs.Originality/valueFor the first time in the research on dual multi-capacity RGV scheduling in an AS/RS, two-sided loading/unloading operations and collision avoidance constraints are simultaneously considered. Furthermore, a mathematical model for minimizing the makespan is developed and the HHSA is developed to determine solutions.


2013 ◽  
Vol 32 (9) ◽  
pp. 2412-2417
Author(s):  
Yue-hong LI ◽  
Pin WAN ◽  
Yong-hua WANG ◽  
Jian YANG ◽  
Qin DENG

2016 ◽  
Vol 25 (4) ◽  
pp. 473-513 ◽  
Author(s):  
Salima Ouadfel ◽  
Abdelmalik Taleb-Ahmed

AbstractThresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.


Sign in / Sign up

Export Citation Format

Share Document