Automated BIM schedule generation approach for solving time–cost trade-off problems

2021 ◽  
Vol 28 (10) ◽  
pp. 3346-3367
Author(s):  
Mohamed ElMenshawy ◽  
Mohamed Marzouk

PurposeNowadays, building information modeling (BIM) represents an evolution in the architecture, engineering and construction (AEC) industries with its various applications. BIM is capable to store huge amounts of information related to buildings which can be leveraged in several areas such as quantity takeoff, scheduling, sustainability and facility management. The main objective of this research is to establish a model for automated schedule generation using BIM and to solve the time–cost trade-off problem (TCTP) resulting from the various scenarios offered to the user.Design/methodology/approachA model is developed to use the quantities exported from a BIM platform, then generate construction activities, calculate the duration of each activity and finally the logic/sequence is applied in order to link the activities together. Then, multiobjective optimization is performed using nondominated sorting genetic algorithm (NSGA-II) in order to provide the most feasible solutions considering project duration and cost. The researchers opted NSGA-II because it is one of the well-known and credible algorithms that have been used in many applications, and its performances were tested in several comparative studies.FindingsThe proposed model is capable to select the near-optimum scenario for the project and export it to Primavera software. A case study is worked to demonstrate the use of the proposed model and illustrate its main features.Originality/valueThe proposed model can provide a simple and user-friendly model for automated schedule generation of construction projects. In addition, opportunities related to the interface between an automated schedule generation model and Primavera software are enabled as Primavera is one of the most popular and common schedule software solutions in the construction industry. Furthermore, it allows importing data from MS Excel, which is used to store activities data in the different scenarios. In addition, there are numerous solutions, each one corresponds to a certain duration and cost according to the performance factor which often reflects the number of crews assigned to the activity and/or construction method.

2018 ◽  
Vol 8 (4) ◽  
pp. 372-385 ◽  
Author(s):  
Ahmad Huzaimi Abd Jamil ◽  
Mohamad Syazli Fathi

Purpose Building information modeling (BIM) has been proven to enable outstanding results in construction processes by enhancing knowledge sharing with regard to a building or facility throughout its life cycle from the conceptual design to facility management. The purpose of this paper is to investigate the extent to which the use of BIM has impacted the legal and contractual implications of the existing construction contracts for aligning the three sets of relevant development domains: BIM functionality, contract procurement methods, and BIM legal and contractual issues to enhance the efficient use of valuable resources. Design/methodology/approach This exploratory study was undertaken by analyzing the literature using a novel approach involving a matrix that juxtaposes BIM functionalities for each project life cycle with contract procurement methods. As part of the study, 28 interactions of BIM legal and contractual issues have been identified, as representing positive and negative interactions. Findings The interaction matrix framework that juxtaposes BIM functionalities and procurement methods highlights the theoretical and practical relationships identified between the methods. It also simultaneously recognizes the constructive and destructive interactions between these development domains by means of critically identifying the possible interactions of the legal and contractual aspects of both the BIM project procurement and the practical aspects of BIM project delivery. Originality/value The present study contributes to the existing literature by extensively identifying the probable interactions of contractual issues within BIM functionality with contract procurement methods throughout the life cycle of a building construction project.


2019 ◽  
Vol 35 (2) ◽  
pp. 28-29

Purpose This paper aims to review the latest management developments across the globe and pinpoint practical implications from cutting-edge research and case studies. Design/methodology/approach This briefing is prepared by an independent writer who adds their own impartial comments and places the articles in context. Findings For worksites to attain the highest possible efficiencies, spatial conflicts need to be addressed and minimized. To do this, a combination of 5D CAD models and time-cost trade-off and building information modeling knowledge need to be adopted. Originality/value The briefing saves busy executives, strategists and researchers hours of reading time by selecting only the very best, most pertinent information and presenting it in a condensed and easy-to-digest format.


2019 ◽  
Vol 19 (3) ◽  
pp. 321-342 ◽  
Author(s):  
Timothy Oluwatosin Olawumi ◽  
Daniel W.M. Chan

Purpose The increasing urbanization of the built environment has bolstered the need to promote green Building Information Modeling (BIM) initiative in new construction projects and the rehabilitation of old premises. This study aims to explore and examine the key benefits of the implementation of BIM and sustainability practices in the built environment. Design/methodology/approach The study gathered the worldwide perceptions of 220 survey participants from 21 countries which were analyzed using descriptive and inferential analytical methods. The identified individual benefits of green BIM were further categorized into their underlying clusters using factor analysis. Findings The key benefits are related to enhancing project efficiency and productivity, ensuring real-time sustainable design and multi-design alternatives, facilitating the selection of sustainable materials and components, together with reducing material wastage and project’s environmental impact, among others. The study analyzed and compared the perceptions of the diverse groups of the respondents as well. Practical implications Effective blueprints and insightful recommendations for enhancing the various stakeholders’ capacities to implement green BIM in their construction projects were put forward to achieve the aim of sustainable smart urbanization. Originality/value The study identified salient benefits of the adoption of BIM and sustainability practices. The proper integration of these concepts and the execution of the recommended useful strategies by construction stakeholders, policymakers and local authorities will enable the built environment to reap the gains of its implementation.


2019 ◽  
Vol 26 (4) ◽  
pp. 648-667 ◽  
Author(s):  
Øystein Mejlænder-Larsen

Purpose Traditionally, progress in detail engineering in construction projects is reported based on estimates and manual input from the disciplines in the engineering team. Reporting progress on activities in an engineering schedule manually, based on subjective evaluations, is time consuming and can reduce accuracy, especially in larger and multi-disciplinary projects. How can progress in detail engineering be reported using BIM and connected to activities in an engineering schedule? The purpose of this paper is to introduce a three-step process for reporting progress in detail engineering using building information modeling (BIM) to minimize manual reporting and increase quality and accuracy. Design/methodology/approach The findings of this paper are based on the studies of experiences from the execution of projects in the oil and gas industry. Data are collected from an engineering, procurement and construction (EPC) contractor and two engineering contractors using case study research. Findings In the first step, control objects in building information models are introduced. Statuses are added to control objects to fulfill defined quality levels related to milestones. In the second step, the control objects with statuses are used to report visual progress and aggregated in an overall progress report. In the third step, overall progress from building information models are connected to activities in an engineering schedule. Originality/value Existing research works related to monitoring and reporting progress using a BIM focus on construction and not on detail engineering. The research demonstrates that actual progress in detail engineering can be visualized and reported through the use of BIM and extracted to activities in an engineering schedule through a three-step process.


2016 ◽  
Vol 23 (3) ◽  
pp. 265-282 ◽  
Author(s):  
Emad Elbeltagi ◽  
Mohammed Ammar ◽  
Haytham Sanad ◽  
Moustafa Kassab

Purpose – Developing an optimized project schedule that considers all decision criteria represents a challenge for project managers. The purpose of this paper is to provide a multi-objectives overall optimization model for project scheduling considering time, cost, resources, and cash flow. This development aims to overcome the limitations of optimizing each objective at once resulting of non-overall optimized schedule. Design/methodology/approach – In this paper, a multi-objectives overall optimization model for project scheduling is developed using particle swarm optimization with a new evolutionary strategy based on the compromise solution of the Pareto-front. This model optimizes the most important decisions that affect a given project including: time, cost, resources, and cash flow. The study assumes each activity has different execution methods accompanied by different time, cost, cost distribution pattern, and multiple resource utilization schemes. Findings – Applying the developed model to schedule a real-life case study project proves that the proposed model is valid in modeling real-life construction projects and gives important results for schedulers and project managers. The proposed model is expected to help construction managers and decision makers in successfully completing the project on time and reduced budget by utilizing the available information and resources. Originality/value – The paper presented a novel model that has four main characteristics: it produces an optimized schedule considering time, cost, resources, and cash flow simultaneously; it incorporates a powerful particle swarm optimization technique to search for the optimum schedule; it applies multi-objectives optimization rather than single-objective and it uses a unique Pareto-compromise solution to drive the fitness calculations of the evolutionary process.


2019 ◽  
Vol 19 (2) ◽  
pp. 280-294 ◽  
Author(s):  
Ziwei Wang ◽  
Ehsan Rezazadeh Azar

PurposeProject schedules have a vital role in the effective management of time, cost, scope and resources in construction projects, and creating schedules requires schedulers with construction knowledge and experience. The increase in the complexity of building projects and the emergence of building information modeling (BIM) in the architecture, engineering and construction industry have encouraged researchers to explore BIM capabilities for automated schedule generation. The scope and capabilities of the developed systems, however, are limited and the link between design and scheduling is still underdeveloped. This paper aims to investigate methods to develop a BIM-based framework to automatically generate schedules for concrete-framed buildings.Design/methodology/approachThis system first extracts the required data from the building information model, including elements’ dimensions, quantities, spatial information, materials and other related attributes. It then applies construction rules, prior knowledge and production rate data to create project work-packages, calculate their durations and determine their relationships. Finally, it organizes these results into a schedule using project management software.FindingsThis system provides an automated and easy-to-use approach to generate schedules for concrete-framed buildings that are modeled in a BIM platform. It provides two schedules for each project, both a sequential and an overlapped solution, which the schedulers can modify into a practical schedule based on conditions and available resources.Originality/valueThis research project presents an innovative approach to use BIM-based attributes of structural elements to develop list of work-packages and estimate their durations, and then it uses a combination of rule-based and case-based reasoning to generate the schedules.


Author(s):  
Aryani Ahmad Latiffi ◽  
Suzila Mohd ◽  
Juliana Brahim

Building Information Modeling (BIM) represents a new paradigm in the Malaysian architecture, engineering, and construction (AEC) industry. BIM technology provides virtual models (including 3-D models) to generate a building’s entire lifecycle. The model can also be used for analyzing design clashes, project scheduling, cost estimation, and facility management. The use of BIM in construction projects can reduce time to develop a project, reduce construction cost, and increase project quality. This paper aims to explore roles of BIM in the Malaysian construction industry. Semi-structured interviews were conducted with project consultants and BIM consultants involved in two government projects. The projects were the National Cancer Institute (NCI) Malaysia and Sultan Ibrahim Hall (formerly known as the Multipurpose Hall of Universiti Tun Hussein Onn Malaysia, or UTHM). The interviews revealed effects of BIM in both projects and potential improvement in implementing BIM in construction projects in Malaysia. A literature review and the interviews revealed that BIM is increasingly used and accepted by construction players in Malaysia, and is expected to grow in future.


Facilities ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aneetha Vilventhan ◽  
Sanu Razin ◽  
R. Rajadurai

Purpose The relocation of existing underground utilities in urban environments is complex because of the existence of multiple utility agencies being responsible for numerous utilities and over constrained space and time to execute maintenance works. Unfamiliar location and insufficient records of maintenance data hamper the flow of work, causing unnecessary delays and conflicts. The aim of the paper is to explore 4 dimensional Building Information Modeling as a smart solution for the management of multiple utility data for a relocation project in an urban setting. Design/methodology/approach An empirical case-based research methodology is used to collect data and develop the BIM models. Two ongoing construction projects in an urban city are empirically studied, and 4D BIM models of identified utilities are developed to assist management and relocation of existing utilities. Findings The developed BIM models enabled the location of existing sub-surface utilities through 3D visualization and also enabled clash detection. The 4D simulation of BIM model enabled the tracking of actual progress of relocation works and thereby helped in taking necessary actions to minimize forthcoming delays. The evaluation of the developed model showed that the application of 4D BIM improved communication and coordination during utility relocation works. Practical implications 4D BIM for utility infrastructure provides better management of utility information. They provide utility stakeholders an efficient way to coordinate, manage utility relocation processes through improved visualization and communication with a reduction in delays and conflicts. Originality/value Limited efforts were made using 3D BIM for sub-surface utility infrastructure in visualization and management of utility information. Efforts using 4D BIM in coordination and management of utility projects are left unexplored. This study adds value to the current literature through the application of 4D BIM for utility relocation projects.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hui Liu ◽  
Miroslaw J. Skibniewski ◽  
Qianqian Ju ◽  
Junjie Li ◽  
Hongbing Jiang

PurposeThis study aims to explore the innovative capabilities of building information modeling (BIM) in construction projects. The objectives are to construct an inclusive conceptual framework of BIM-enabled construction innovation, identify the status and trends of innovation-related research in BIM publications, synthesize research pertaining to BIM-enabled construction innovation and discover core research requirements in the related body of knowledge.Design/methodology/approachThis study proposes a comprehensive theoretical framework, named innovation pyramid, comprising context, actor, artifact, process, structure and innovative task for exploring and analyzing the innovative capability of BIM in construction projects. Accordingly, mixed methods were used to perform a systematic review of research on the topic of BIM-enabled construction innovation.FindingsThe findings reveal that BIM innovation-related articles have predominantly considered BIM as an innovation from a technological standpoint, while the innovative capabilities of BIM have remained under-researched with a fragmented research focus. Fertile grounds for research have emerged and call for research pertaining to entities of “structure” and “innovative task” as well as interaction, interrelations and mutually adjusting effect among the entities.Practical implicationsThe framework proposed may be useful for subsequent research design and for assisting project management practitioners in the use of BIM to achieve innovation more efficiently.Originality/valueThis research provides an insight into the innovative capabilities of BIM based on the BIM–collaboration–construction innovation logic chain. It contributes to the body of knowledge by devising an inclusive conceptual framework of BIM-enabled construction innovation, synthesizing the state of the art and exposing the research needs in this area.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2402
Author(s):  
Omid Kebriyaii ◽  
Ali Heidari ◽  
Mohammad Khalilzadeh ◽  
Jurgita Antucheviciene ◽  
Miroslavas Pavlovskis

Time, cost, and quality have been known as the project iron triangles and substantial factors in construction projects. Several studies have been conducted on time-cost-quality trade-off problems so far, however, none of them has considered the time value of money. In this paper, a multi-objective mathematical programming model is developed for time-cost-quality trade-off scheduling problems in construction projects considering the time value of money, since the time value of money, which is decreased during a long period of time, is a very important matter. Three objective functions of time, cost, and quality are taken into consideration. The cost objective function includes holding cost and negative cash flows. In this model, the net present value (NPV) of negative cash flow is calculated considering the costs of non-renewable (consumable) and renewable resources in each time period of executing activities, which can be mentioned as the other contribution of this study. Then, three metaheuristic algorithms including multi-objective grey wolf optimizer (MOGWO), non-dominated sorting genetic algorithm (NSGA-II), and multi-objective particle swarm optimization (MOPSO) are applied, and their performance is evaluated using six metrics introduced in the literature. Finally, a bridge construction project is considered as a real case study. The findings show that considering the time value of money can prevent cost overrun in projects. Additionally, the results indicate that the MOGWO algorithm outperforms the NSGA-II and MOPSO algorithms.


Sign in / Sign up

Export Citation Format

Share Document