Turbulent natural convection combined with surface thermal radiation in a square cavity with local heater

2018 ◽  
Vol 28 (7) ◽  
pp. 1698-1715 ◽  
Author(s):  
Igor Miroshnichenko ◽  
Mikhail Sheremet ◽  
Ali J. Chamkha

Purpose The purpose of this paper is to conduct a numerical analysis of transient turbulent natural convection combined with surface thermal radiation in a square cavity with a local heater. Design/methodology/approach The domain of interest includes the air-filled cavity with cold vertical walls, adiabatic horizontal walls and isothermal heater located on the bottom cavity wall. It is assumed in the analysis that the thermophysical properties of the fluid are independent of temperature and the flow is turbulent. Surface thermal radiation is considered for more accurate analysis of the complex heat transfer inside the cavity. The governing equations have been discretized using the finite difference method with the non-uniform grid on the basis of the special algebraic transformation. Turbulence was modeled using the k–ε model. Simulations have been carried out for different values of the Rayleigh number, surface emissivity and location of the heater. Findings It has been found that the presence of surface radiation leads to both an increase in the average total Nusselt number and intensive cooling of such type of system. A significant intensification of convective flow was also observed owing to an increase in the Rayleigh number. It should be noted that a displacement of the heater from central part of the bottom wall leads to significant modification of the thermal plume and flow pattern inside the cavity. Originality/value An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze unsteady turbulent natural convection combined with surface thermal radiation in a square air-filled cavity in the presence of a local isothermal heater. The results would benefit scientists and engineers to become familiar with the analysis of turbulent convective–radiative heat transfer in enclosures with local heaters, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.

2021 ◽  
pp. 326-326
Author(s):  
Mohamed El Hattab ◽  
Zakaria Lafdaili

In this paper, we present a numerical study of turbulent natural convection in a square cavity differentially heated and filled with nanofluid and subjected to an inclined magnetic field. The standard k-? model was used as the turbulence model. The transport equations were discretized by the finite volume method using the SIMPLE algorithm. The influence of the Rayleigh number, the Hartmann number, the orientation angle of the applied magnetic field, the type of nanoparticles as well as the volume fraction of nanoparticles, on the hydrodynamic and thermal characteristics of the nanofluid was illustrated and discussed in terms of streamlines, isotherms and mean Nusselt number. The results obtained show that the heat transfer rate increases with increasing Rayleigh number and orientation angle of the magnetic field but it decreases with increasing Hartmann number. In addition, heat transfer improves with increasing volume fraction and with the use of Al2O3 nanoparticles.


2019 ◽  
Vol 20 (1) ◽  
pp. 229-244
Author(s):  
Mehdi Ahmadi ◽  
Seyed Ali Agha Mirjalily ◽  
Seyed Amir Abbas Oloomi

ABSTRACT: This study is conducted to investigate turbulent natural convection flow in an enclosure with thermal sources using the low-Reynolds number (LRN) k-? model. This enclosure has a cold source with temperature Tc and a hot source with temperature Th as thermal sources, other walls of the enclosure are adiabatic. The aim of this study is to predict the effect of change in Rayleigh number, repositioning of cold and hot sources, and thermal sources aspect ratio on the flow field, temperature, and rate of heat transfer. To achieve this aim, the equations of continuity, momentum, energy, turbulent kinetic energy, and kinetic energy dissipation are employed in the case of 2D turbulence with constant thermo-physical properties except the density in the buoyancy term (Boussinesq approximation). To numerically solve these equations, the finite volume method and SIMPLE algorithm are used. According to the modeling results, the most optimal temperature distribution in the enclosure is seen when the hot source is below the cold source. With decreasing distance between hot and cold sources, heat transfer rate increases. The maximal heat transfer rate is derived via study of the heating sources aspect ratio. In constant positions of cold and hot sources on a wall, the heat transfer rate increases with increasing Rayleigh number (Ra=109-1011). ABSTAK: Kajian ini dijalankan bagi mengkaji perubahan semula jadi aliran perolakan dalam tempat tertutup dengan sumber haba menggunakan model k-? nombor Reynolds-rendah (LRN). Bekas tertutup ini mempunyai dua sumber haba iaitu sumber sejuk dengan suhu Tc dan sumber panas dengan suhu Th, manakala dinding lain bekas ini adalah adiabatik. Tujuan kajian ini adalah bagi mengesan perubahan nombor Rayleigh, mengubah sumber sejuk dan panas dan nisbah sumber haba kepada kawasan aliran, suhu dan halaju perubahan haba. Bagi mencapai tujuan tersebut, persamaan sambungan, momentum, tenaga, tenaga kinetik perolakan, dan pengurangan tenaga kinetik telah dilaksanakan dalam kes perolakan 2D dengan sifat fizikal-haba berterusan (malar) kecuali isipadu terma keapungan (anggaran Boussinesq). Bagi menyelesaikan persamaan ini secara berangka, kaedah isipadu terhad dan algorithma MUDAH telah digunakan. Berdasarkan keputusan model, suhu distribusi optimal dalam bekas tertutup dilihat apabila sumber panas adalah kurang daripada sumber sejuk. Dengan pengurangan jarak antara sumber panas dan sejuk, kadar pertukaran haba meningkat. Kadar pertukaran haba maksima telah diperoleh melalui kajian nisbah  aspek sumber pemanasan. Kadar pertukaran haba bertambah dengan bertambahnya nombor Rayleigh  (Ra=109-1011), pada posisi tetap sumber sejuk dan panas pada dinding bekas.


2019 ◽  
Vol 29 (10) ◽  
pp. 3659-3684 ◽  
Author(s):  
Rasul Mohebbi ◽  
Mohsen Izadi ◽  
Nor Azwadi Che Sidik ◽  
Gholamhassan Najafi

Purpose This paper aims to study the natural convection of a nanofluid inside a cavity which contains obstacles using lattice Boltzmann method (LBM). The results have focused mainly on various parameters such as number and aspect ratio of roughness elements and different nanoparticle volume fraction. The isotherms and streamlines are presented to describe the hydrodynamics and thermal behaviors of the nanofluid flow throughout the enclosure. Design/methodology/approach The methodology of this paper consists of mathematical model, statement of the problem, nanofluid thermophysical properties, lattice Boltzmann method, LBM for fluid flow, LBM for heat transfer, numerical strategy, boundary conditions, Nusselt (Nu) number calculation, code validation and grid independence. Findings Natural convection heat transfers of a nanofluid inside cavities with and without rough elements have been studied. Lattice Boltzmann technique has been used as numerical approach. The results showed that at higher Rayleigh number (Ra = 106), there are denser streamlines near the left (source) and right wall (sink) which results in better cooling and enhances convective heat rejection to the heat sink. After a distinctive aspect ratio of rough elements (A = 0.1), change in streamline pattern which arises from increasing of aspect ratio does not have an important effect on isotherms. Results indicate that for lower Rayleigh number (Ra = 103), no variation in average Nu is observed with increasing in number of roughness, while for higher one (Ra = 106) average Nu decreases from N = 0 (smooth cavity) up to N = 4 and then remains constant (N = 6). Originality/value Currently, no argumentative and comprehensive extraction can be concluded without fully understanding the role of different arrangement of roughness. Some geometrical parameters such as aspect ratio, number and position of rough elements have been considered. Also, the effect of nanoparticle concentration was studied at different Ra number. Briefly, using LBM, this paper aims to investigate the natural convection of a nanofluid flow on the thermal and hydrodynamics parameters in the presence of rough element with various arrangements.


2020 ◽  
Vol 30 (10) ◽  
pp. 4629-4648
Author(s):  
Zehba A.S. Raizah

Purpose The purpose of this study is to apply the incompressible smoothed particle hydrodynamics method for simulating the natural convection flow inside a cavity including cross blades or circular cylinder cylinder. Design/methodology/approach The base fluid is water and copper-water nanofluid is treated as a working fluid. The left and rights walls are maintained at a cool temperature, the horizontal cavity walls are isolated and the inner shape was heated. The physical parameters are the length of the blades L_Blade, the number of cross blades, circular cylinder radius L_R, Rayleigh number Ra and the nanoparticles volume fraction. Findings The results reveal that the lengths of the cross blade, number of the blades and radius of the circular cylinder is working as an enhancement factor for heat transfer and fluid flows inside a cavity. Adding nanoparticles augments heat transfer and reduces the fluid flow intensity inside a cavity. The best case for buoyancy-driven flow was obtained when the inner shape is the circular cylinder at a higher Rayleigh number. Originality/value This work uses a distinctive numerical method to study the natural convection heat from cross blades inside a cavity filled with nanofluid. It provides a new analysis of this issue and presented good results.


1994 ◽  
Vol 116 (2) ◽  
pp. 400-408 ◽  
Author(s):  
R. A. W. M. Henkes ◽  
C. J. Hoogendoorn

By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 1020 the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k–ε model and by the low-Reynolds-number k–ε models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k–ε model used.


2018 ◽  
Vol 28 (12) ◽  
pp. 2916-2941 ◽  
Author(s):  
Taher Armaghani ◽  
A. Kasaeipoor ◽  
Mohsen Izadi ◽  
Ioan Pop

Purpose The purpose of this paper is to numerically study MHD natural convection and entropy generation of Al2O3-water alumina nanofluid inside of T-shaped baffled cavity which is subjected to a magnetic field. Design/methodology/approach Effect of various geometrical, fluid and flow factors such as aspect ratio of enclosure and baffle length, Rayleigh and Hartmann number of nanofluid have been considered in detail. The hydrodynamics and thermal indexes of nanofluid have been described using streamlines, isotherms and isentropic lines. Findings It is found that by enhancing Hartmann number, symmetrical streamlines gradually lose symmetry and their values decline. It is found that by enhancing Hartmann number, symmetrical streamlines gradually lose symmetry and their values decline. The interesting finding is an increase in the impact of Hartmann number on heat transfer indexes with augmenting Rayleigh number. However, with augmenting Rayleigh number and, thus, strengthening the buoyant forces, the efficacy of Hartmann number one, an index indicating the simultaneous impact of natural heat transfer to entropy generation increases. It is clearly seen that the efficacy of nanofluid on increased Nusselt number enhances with increasing aspect ratio of the enclosure. Based on the results, the Nusselt number generally enhances with the larger baffle length in the enclosure. Finally, with larger Hartmann number and lesser Nusselt one, entropy production is reduced. Originality/value The authors believe that all the results, both numerical and asymptotic, are original and have not been published elsewhere.


2017 ◽  
Vol 27 (10) ◽  
pp. 2385-2399 ◽  
Author(s):  
Kamel Milani Shirvan ◽  
Mojtaba Mamourian ◽  
Soroush Mirzakhanlari ◽  
A.B. Rahimi ◽  
R. Ellahi

Purpose The purpose of this paper is to present the numerical solutions of surface radiation and combined natural convection heat transfer in a solar cavity receiver. The paper aims to discuss sundry issues that take place in the said model. Design/methodology/approach The numerical solutions are developed by means of second-order upwind scheme using the SIMPLE algorithm. Findings The effects of physical factors such as Rayleigh number (104 ≤ Ra ≤ 106), inclination angels of insulated walls (0º ≤ θ ≤ 10º) and the wall surface emissivity (0 ≤ ε ≤ 1) on natural convection-surface radiation heat transfer rate are analyzed. Impact of sundry parameters on flow quantities are discussed and displayed via graphs and tables. Stream lines and isothermal lines have also been drawn in the region of cavity. The numerical results reveal that increasing the Rayleigh number, wall surface emissivity and inclination angels of insulated walls in an open cavity enhances the mean total Nusselt number. The variations of the surface radiation and natural convection heat transfer mean Nusselt numbers are very small to the inclination angle of θ, while a significant change is noted for the case of Rayleigh number and emissivity. Originality/value To the best of authors’ knowledge, this model is reported for the first time.


Author(s):  
Ioan Pop ◽  
Mikhail Sheremet ◽  
Dalia Sabina Cimpean

Purpose The main purpose of this numerical study is to provide a solution for natural convection in a partially heated, wavy cavity filled with a nanofluid using Buongiorno’s nanofluid model. Design/methodology/approach The domain of interest is a two-dimensional cavity bounded by an isothermal left wavy wall, adiabatic horizontal flat walls and right flat wall with a partial isothermal zone. To study the behaviour of the nanofluid, a two-phase Buongiorno mathematical model with the effects of the Brownian motion and thermophoresis is used. The governing dimensionless partial differential equations with corresponding boundary conditions were numerically solved by the finite difference method of the second-order accuracy using the algebraic transformation of the physical wavy cavity in a computational rectangular domain. The study has been conducted using the following values of the governing parameters: Ra = 104-106, Le = 10, Pr = 6.26, Nr = 0.1, Nb = 0.1, Nt = 0.1, A = 1, κ = 1-3, b = 0.2, hhs/L = 0.25, h1/L = 0.0-0.75 and τ = 0-0.25. Findings It is found that an increase in the undulation number leads to a weak intensification of convective flow and a reduction of Nū because of more essential cooling of the wavy troughs where the temperature gradient decreases. Variations of the heater location show a modification of the fluid flow and heat transfer. The upper position of the heater reflects the minimum heat transfer rate, while the position between the bottom part and the middle section (h1/L = 0.25) characterizes an enhancement of heat transfer. Originality/value The originality of this work is to analyse the natural convection in a partially heated wavy cavity filled by a nanofluid using Buongiorno’s nanofluid model. The results will benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.


Sign in / Sign up

Export Citation Format

Share Document