scholarly journals Airbnb research: an analysis in tourism and hospitality journals

Author(s):  
Luisa Andreu ◽  
Enrique Bigne ◽  
Suzanne Amaro ◽  
Jesús Palomo

Purpose The purpose of this study is to examine Airbnb research using bibliometric methods. Using research performance analysis, this study highlights and provides an updated overview of Airbnb research by revealing patterns in journals, papers and most influential authors and countries. Furthermore, it graphically illustrates how research themes have evolved by mapping a co-word analysis and points out potential trends for future research. Design/methodology/approach The methodological design for this study involves three phases: the document source selection, the definition of the variables to be analyzed and the bibliometric analysis. A statistical multivariate analysis of all the documents’ characteristics was performed with R software. Furthermore, natural language processing techniques were used to analyze all the abstracts and keywords specified in the 129 selected documents. Findings Results show the genesis and evolution of publications on Airbnb research, scatter of journals and journals’ characteristics, author and productivity characteristics, geographical distribution of the research and content analysis using keywords. Research limitations/implications Despite Airbnb having a history of 10 years, research publications only started in 2015. Therefore, the bibliometric study includes papers from 2015 to 2019. One of the main limitations is that papers were selected in October of 2019, before the year was over. However, the latest academic publications (in press and earlycite) were included in the analysis. Originality/value This study analyzed bibliometric set of laws (Price’s, Lotka’s and Bradford’s) to better understand the patterns of the most relevant scientific production regarding Airbnb in tourism and hospitality journals. Using natural language processing techniques, this study analyzes all the abstracts and keywords specified in the selected documents. Results show the evolution of research topics in four periods: 2015-2016, 2017, 2018 and 2019.

AERA Open ◽  
2021 ◽  
Vol 7 ◽  
pp. 233285842110286
Author(s):  
Kylie L. Anglin ◽  
Vivian C. Wong ◽  
Arielle Boguslav

Though there is widespread recognition of the importance of implementation research, evaluators often face intense logistical, budgetary, and methodological challenges in their efforts to assess intervention implementation in the field. This article proposes a set of natural language processing techniques called semantic similarity as an innovative and scalable method of measuring implementation constructs. Semantic similarity methods are an automated approach to quantifying the similarity between texts. By applying semantic similarity to transcripts of intervention sessions, researchers can use the method to determine whether an intervention was delivered with adherence to a structured protocol, and the extent to which an intervention was replicated with consistency across sessions, sites, and studies. This article provides an overview of semantic similarity methods, describes their application within the context of educational evaluations, and provides a proof of concept using an experimental study of the impact of a standardized teacher coaching intervention.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yun Kyung Oh ◽  
Jisu Yi

PurposeThe evaluation of perceived attribute performance reflected in online consumer reviews (OCRs) is critical in gaining timely marketing insights. This study proposed a text mining approach to measure consumer sentiments at the feature level and their asymmetric impacts on overall product ratings.Design/methodology/approachThis study employed 49,130 OCRs generated for 14 wireless earbud products on Amazon.com. Word combinations of the major quality dimensions and related sentiment words were identified using bigram natural language processing (NLP) analysis. This study combined sentiment dictionaries and feature-related bigrams and measured feature level sentiment scores in a review. Furthermore, the authors examined the effect of feature level sentiment on product ratings.FindingsThe results indicate that customer sentiment for product features measured from text reviews significantly and asymmetrically affects the overall rating. Building upon the three-factor theory of customer satisfaction, the key quality dimensions of wireless earbuds are categorized into basic, excitement and performance factors.Originality/valueThis study provides a novel approach to assess customer feature level evaluation of a product and its impact on customer satisfaction based on big data analytics. By applying the suggested methodology, marketing managers can gain in-depth insights into consumer needs and reflect this knowledge in their future product or service improvement.


2021 ◽  
Author(s):  
Monique B. Sager ◽  
Aditya M. Kashyap ◽  
Mila Tamminga ◽  
Sadhana Ravoori ◽  
Christopher Callison-Burch ◽  
...  

BACKGROUND Reddit, the fifth most popular website in the United States, boasts a large and engaged user base on its dermatology forums where users crowdsource free medical opinions. Unfortunately, much of the advice provided is unvalidated and could lead to inappropriate care. Initial testing has shown that artificially intelligent bots can detect misinformation on Reddit forums and may be able to produce responses to posts containing misinformation. OBJECTIVE To analyze the ability of bots to find and respond to health misinformation on Reddit’s dermatology forums in a controlled test environment. METHODS Using natural language processing techniques, we trained bots to target misinformation using relevant keywords and to post pre-fabricated responses. By evaluating different model architectures across a held-out test set, we compared performances. RESULTS Our models yielded data test accuracies ranging from 95%-100%, with a BERT fine-tuned model resulting in the highest level of test accuracy. Bots were then able to post corrective pre-fabricated responses to misinformation. CONCLUSIONS Using a limited data set, bots had near-perfect ability to detect these examples of health misinformation within Reddit dermatology forums. Given that these bots can then post pre-fabricated responses, this technique may allow for interception of misinformation. Providing correct information, even instantly, however, does not mean users will be receptive or find such interventions persuasive. Further work should investigate this strategy’s effectiveness to inform future deployment of bots as a technique in combating health misinformation. CLINICALTRIAL N/A


AI Magazine ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 42-54 ◽  
Author(s):  
Vasile Rus ◽  
Sidney D’Mello ◽  
Xiangen Hu ◽  
Arthur Graesser

We report recent advances in intelligent tutoring systems with conversational dialogue. We highlight progress in terms of macro and microadaptivity. Macroadaptivity refers to a system’s capability to select appropriate instructional tasks for the learner to work on. Microadaptivity refers to a system’s capability to adapt its scaffolding while the learner is working on a particular task. The advances in macro and microadaptivity that are presented here were made possible by the use of learning progressions, deeper dialogue and natural language processing techniques, and by the use of affect-enabled components. Learning progressions and deeper dialogue and natural language processing techniques are key features of DeepTutor, the first intelligent tutoring system based on learning progressions. These improvements extend the bandwidth of possibilities for tailoring instruction to each individual student which is needed for maximizing engagement and ultimately learning.


Author(s):  
César González-Mora ◽  
Cristina Barros ◽  
Irene Garrigós ◽  
Jose Zubcoff ◽  
Elena Lloret ◽  
...  

1990 ◽  
Vol 17 (1) ◽  
pp. 21-29
Author(s):  
C. Korycinski ◽  
Alan F. Newell

The task of producing satisfactory indexes by automatic means has been tackled on two fronts: by statistical analysis of text and by attempting content analysis of the text in much the same way as a human indexcr does. Though statistical techniques have a lot to offer for free-text database systems, neither method has had much success with back-of-the-bopk indexing. This review examines some problems associated with the application of natural-language processing techniques to book texts.


Sign in / Sign up

Export Citation Format

Share Document