Mapping knowledge structure by keyword co-occurrence and social network analysis

2018 ◽  
Vol 36 (4) ◽  
pp. 636-650 ◽  
Author(s):  
Fei-Fei Cheng ◽  
Yu-Wen Huang ◽  
Hsin-Chun Yu ◽  
Chin-Shan Wu

Purpose The purpose of this paper is to present the knowledge structure based on the articles published in Library Hi Tech. The research hotspots are expected to be revealed through the keyword co-occurrence and social network analysis. Design/methodology/approach Data sets based on publications from Library Hi Tech covering the time period from 2006 to 2017 were extracted from Web of Science and developed as testbeds for evaluation of the CiteSpace system. Highly cited keywords were analyzed by CiteSpace which supports visual exploration with knowledge discovery in bibliographic databases. Findings The findings suggested that the percentage of publications in the USA, Germany, China, and Canada are high. Further, the most popular keywords identified in Library Hi Tech were: “service,” “technology,” “digital library,” “university library,” and “academic library.” Finally, four research issues were identified based on the most-cited articles in Library Hi Tech. Originality/value While keyword plays an important role in scientific research, limited studies paid attention to the keyword analysis in librarian research. The contribution of this study is to systematically explore the knowledge structure constructed by the keywords in Library Hi Tech.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hakimeh Hazrati ◽  
Shoaleh Bigdeli ◽  
Seyed Kamran Soltani Arabshahi ◽  
Vahideh Zarea Gavgani ◽  
Nafiseh Vahed

Abstract Background Analyzing the previous research literature in the field of clinical teaching has potential to show the trend and future direction of this field. This study aimed to visualize the co-authorship networks and scientific map of research outputs of clinical teaching and medical education by Social Network Analysis (SNA). Methods We Identified 1229 publications on clinical teaching through a systematic search strategy in the Scopus (Elsevier), Web of Science (Clarivate Analytics) and Medline (NCBI/NLM) through PubMed from the year 1980 to 2018.The Ravar PreMap, Netdraw, UCINet and VOSviewer software were used for data visualization and analysis. Results Based on the findings of study the network of clinical teaching was weak in term of cohesion and the density in the co-authorship networks of authors (clustering coefficient (CC): 0.749, density: 0.0238) and collaboration of countries (CC: 0.655, density: 0.176). In regard to centrality measures; the most influential authors in the co-authorship network was Rosenbaum ME, from the USA (0.048). More, the USA, the UK, Canada, Australia and the Netherlands have central role in collaboration countries network and has the vertex co-authorship with other that participated in publishing articles in clinical teaching. Analysis of background and affiliation of authors showed that co-authorship between clinical researchers in medicine filed is weak. Nineteen subject clusters were identified in the clinical teaching research network, seven of which were related to the expected competencies of clinical teaching and three related to clinical teaching skills. Conclusions In order to improve the cohesion of the authorship network of clinical teaching, it is essential to improve research collaboration and co-authorship between new researchers and those who have better closeness or geodisk path with others, especially those with the clinical background. To reach to a dense and powerful topology in the knowledge network of this field encouraging policies to be made for international and national collaboration between clinicians and clinical teaching specialists. In addition, humanitarian and clinical reasoning need to be considered in clinical teaching as of new direction in the field from thematic aspects.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nandun Madhusanka Hewa Welege ◽  
Wei Pan ◽  
Mohan Kumaraswamy

PurposeApplications of social network analysis (SNA) are evidently popular amongst scholars for mapping stakeholder and other relational networks in improving the sustainability of construction activities and the resulting built environment. Nevertheless, the literature reveals a lack of thorough understanding of optimal SNA applications in this field. Therefore, this paper aims to convey a comprehensive critical review of past applications of SNA in this field.Design/methodology/approach95 relevant journal papers were initially identified from the “Web of Science” database and a bibliometric analysis was carried out using the “VOS Viewer” software. The subsequent in-depth review of the SNA methods, focussed on 24 specifically relevant papers selected from these aforesaid 95 papers.FindingsA significant growth of publications in this field was identified after 2014, especially related to topics on stakeholder management. “Journal of Cleaner Production”, “International Journal of Project Management” and “Sustainability” were identified as the most productive sources in this field, with the majority of publications from China. Interviews and questionnaires were the popular data collection methods while SNA “Centrality” measures were utilised in over 70% of the studies. Furthermore, potential areas were noted, to improve the mapping and thereby provide useful information to managers who could influence relevant networks and consequentially better sustainability outcomes, including those enhanced by collaborative networks.Originality/valueCloser collaboration has been found to help enhance sustainability in construction and built environment, hence attracting research interest amongst scholars on how best to enable this. SNA is established as a significant methodological approach to analysing interrelationships and collaborative potential in general. In a pioneering application here, this paper initiates the drawing together of findings from relevant literature to provide useful insights for future researchers to comprehensively identify, compare and contrast the applications of SNA techniques in construction and built environment management from a sustainability viewpoint.


2020 ◽  
Vol 13 (4) ◽  
pp. 503-534
Author(s):  
Mehmet Ali Köseoğlu ◽  
John Parnell

PurposeThe authors evaluate the evolution of the intellectual structure of strategic management (SM) by employing a document co-citation analysis through a network analysis for academic citations in articles published in the Strategic Management Journal (SMJ).Design/methodology/approachThe authors employed the co-citation analysis through the social network analysis.FindingsThe authors outlined the evolution of the academic foundations of the structure and emphasized several domains. The economic foundation of SM research with macro and micro perspectives has generated a solid knowledge stock in the literature. Industrial organization (IO) psychology has also been another dominant foundation. Its robust development and extension in the literature have focused on cognitive issues in actors' behaviors as a behavioral foundation of SM. Methodological issues in SM research have become dominant between 2004 and 2011, but their influence has been inconsistent. The authors concluded by recommending future directions to increase maturity in the SM research domain.Originality/valueThis is the first paper to elucidate the intellectual structure of SM by adopting the co-citation analysis through the social network analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anson Au

Purpose This paper aims to examine how financial technology (FinTech) knowledge from foreign firms flows into and among elite commercial banks in Hong Kong’s financial sector to drive innovation. Design/methodology/approach Using social network analysis and regression analysis on a novel database of patents held by Hong Kong’s elite commercial banks, this paper examines the relationships between network position and FinTech knowledge flow. Findings This paper finds four untold patterns of innovation and inequality in Hong Kong’s financial sector: only three banks are responsible for all the FinTech knowledge entering Hong Kong; most foreign FinTech comes from the USA through Hong Kong and Shanghai Banking Corporation, whereas most FinTech from China enters through Fubon Bank and Development Bank of Singapore; older banks and banks with more connections to firms inside Asia are more likely to import FinTech; the most beneficial sources of FinTech for a bank’s network position are firms from outside Asia. Originality/value Despite the well-documented volumes of cross-border and cross-continental movement of financial institutions in Hong Kong, there is little work on the knowledge flows that underwrite this mobility. This paper addresses this gap by using FinTech knowledge flows to map the distribution of innovation, network position and competitive advantage in Hong Kong’s financial sector.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yung-Ting Chuang ◽  
Yi-Hsi Chen

PurposeThe purpose of this paper is to apply social network analysis (SNA) to study faculty research productivity, to identify key leaders, to study publication keywords and research areas and to visualize international collaboration patterns and analyze collaboration research fields from all Management Information System (MIS) departments in Taiwan from 1982 to 2015.Design/methodology/approachThe authors first retrieved results encompassing about 1,766 MIS professors and their publication records between 1982 and 2015 from the Ministry of Science and Technology of Taiwan (MOST) website. Next, the authors merged these publication records with the records obtained from the Web of Science, Google Scholar, IEEE Xplore, ScienceDirect, Airiti Library and Springer Link databases. The authors further applied six network centrality equations, leadership index, exponential weighted moving average (EWMA), contribution value and k-means clustering algorithms to analyze the collaboration patterns, research productivity and publication patterns. Finally, the authors applied D3.js to visualize the faculty members' international collaborations from all MIS departments in Taiwan.FindingsThe authors have first identified important scholars or leaders in the network. The authors also see that most MIS scholars in Taiwan tend to publish their papers in the journals such as Decision Support Systems and Information and Management. The authors have further figured out the significant scholars who have actively collaborated with academics in other countries. Furthermore, the authors have recognized the universities that have frequent collaboration with other international universities. The United States, China, Canada and the United Kingdom are the countries that have the highest numbers of collaborations with Taiwanese academics. Lastly, the keywords model, system and algorithm were the most common terms used in recent years.Originality/valueThis study applied SNA to visualize international research collaboration patterns and has revealed some salient characteristics of international cooperation trends and patterns, leadership networks and influences and research productivity for faculty in Information Management departments in Taiwan from 1982 to 2015. In addition, the authors have discovered the most common keywords used in recent years.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yi-Chun Chang ◽  
Kuan-Ting Lai ◽  
Seng-Cho T. Chou ◽  
Wei-Chuan Chiang ◽  
Yuan-Chen Lin

PurposeTelecommunication (telecom) fraud is one of the most common crimes and causes the greatest financial losses. To effectively eradicate fraud groups, the key fraudsters must be identified and captured. One strategy is to analyze the fraud interaction network using social network analysis. However, the underlying structures of fraud networks are different from those of common social networks, which makes traditional indicators such as centrality not directly applicable. Recently, a new line of research called deep random walk has emerged. These methods utilize random walks to explore local information and then apply deep learning algorithms to learn the representative feature vectors. Although effective for many types of networks, random walk is used for discovering local structural equivalence and does not consider the global properties of nodes.Design/methodology/approachThe authors proposed a new method to combine the merits of deep random walk and social network analysis, which is called centrality-guided deep random walk. By using the centrality of nodes as edge weights, the authors’ biased random walks implicitly consider the global importance of nodes and can thus find key fraudster roles more accurately. To evaluate the authors’ algorithm, a real telecom fraud data set with around 562 fraudsters was built, which is the largest telecom fraud network to date.FindingsThe authors’ proposed method achieved better results than traditional centrality indices and various deep random walk algorithms and successfully identified key roles in a fraud network.Research limitations/implicationsThe study used co-offending and flight record to construct a criminal network, more interpersonal relationships of fraudsters, such as friendships and relatives, can be included in the future.Originality/valueThis paper proposed a novel algorithm, centrality-guided deep random walk, and applied it to a new telecom fraud data set. Experimental results show that the authors’ method can successfully identify the key roles in a fraud group and outperform other baseline methods. To the best of the authors’ knowledge, it is the largest analysis of telecom fraud network to date.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yi-Hwa Liou ◽  
Alan J. Daly

PurposeThis study responds to major administrative and policy priorities to support science, technology, engineering and mathematics (STEM) education by investigating a multi-sector ecosystem of regional organizations that support a STEM pipeline for education and careers.Design/methodology/approachWe use social network analysis to investigate an entire region within a geographic region of California which included 316 organizations that represent different stakeholder groups, including educational institutions (school districts, schools and higher education), government, private companies, museums, libraries and multiple community-based organizations. This STEM ecosystem reflects a systems-level analysis of a region from a unique social network perspective.FindingsResults indicate that organizations have a surface-level access to STEM-related information, but the deeper and more intense relationship which involves strategic collaboration is limited. Further, interactions around information and collaboration between organizations were purportedly in part to be about education, rarely included PK-12 schools and district as central actors in the ecosystem. In addition, while institutions of higher education occupy a central position in connecting and bridging organizations within the ecosystem, higher education's connectivity to the PK-12 education sector is relatively limited in terms of building research and practice partnerships.Originality/valueThis research has implications for how regional-level complex systems are analyzed, led and catalyzed and further reflects the need to intentionally attend to the growth of STEM networks.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marco Valeri ◽  
Rodolfo Baggio

Purpose The purpose of this paper is to provide an overview of how quantitative analysis methods have been and can be used to improve the competitiveness of tourism destination. The focus of the study is social network analysis (SNA). Design/methodology/approach The research methodology is qualitative and consists of the review literature relevant to this thesis. This methodology is necessary to give an account of the methods and the techniques adopted for the data collection used in other economic sectors. Findings SNA is needed to analyze the creation and configuration of communities of practice within destination and to identify possible barriers to effective interaction. Essentially, it is a complex adaptive socio-economic system. It shares many (if not all) of the characteristics usually associated with such entities, namely, non-linear relationships among the components, self-organization and emergence of organizational structures, robustness to external shocks. Research limitations/implications The most important limit of this paper is that all the results presented here do not concern a single case study. Future research studies will provide a larger number of cases and examples to give the necessary validation to the findings presented here. Practical implications This paper provides a view into the network of relationships that may give tourism organization managers a strong leverage to improve the flow of information and to target opportunities where this flow may have the most impact on regulatory or business activities. Originality/value SNA can help to detect actual expertise and consequently project the potential losses deriving from an inefficient flow of knowledge. In addition, the authors will be able to define roles in the organizational networks and make an evaluation of informal organizational structures over the formal ones. Traditional organizational theories lack a concrete correspondence with mathematical studies and in this respect the authors sought to identify a correspondence.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiansheng Qu ◽  
Jinyu Han ◽  
Lina Liu ◽  
Li Xu ◽  
Hengji Li ◽  
...  

PurposeThe purpose of this paper is to explore the heterogeneity and correlations of agricultural greenhouse gas (GHG) emissions among provinces in China, and then policy implications are proposed.Design/methodology/approachAfter agricultural GHG accounting and a pre-analysis of inter-provincial heterogeneity, improved gravity model and the Social Network Analysis (SNA) methods are introduced to construct the network, being carried out from three aspects of the whole network, individual provincial characteristics and cluster analysis.Findings(1) There are significant regional variations in agricultural GHG scale among provinces owing to the layout of agricultural production, and the temporal trends show that the direction and speed of agricultural GHG scale change vary among provinces; (2) In terms of inter-provincial correlations, there exists a complex spatial network of agricultural GHG among provinces, which tends to be more complex, intensive and stable, while the status of the provinces in the network also has gradually become more balanced. All provinces played their respective roles in the four clusters of the network with agricultural layout and comparative advantages, and the distribution has continuously optimized.Practical implicationsThe inter-provincial network characteristics of agricultural GHG emissions and its evolution have practical implications for differentiated and coordinated agricultural GHG reduction policies at the provincial levels.Originality/valueThis paper innovatively study inter-provincial agricultural GHG correlations in China with the SNA methods used to study economic and social connections in the past. There is some originality in the introduction of network theory and application of the SNA methods, which can provide some reference for researches in similar fields.


Sign in / Sign up

Export Citation Format

Share Document