Additive manufacturing using fine wire-based laser metal deposition

2019 ◽  
Vol 26 (3) ◽  
pp. 473-483
Author(s):  
Muhammad Omar Shaikh ◽  
Ching-Chia Chen ◽  
Hua-Cheng Chiang ◽  
Ji-Rong Chen ◽  
Yi-Chin Chou ◽  
...  

Purpose Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish. Design/methodology/approach The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated. Findings An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented. Originality/value To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.

2015 ◽  
Vol 21 (3) ◽  
pp. 250-261 ◽  
Author(s):  
Brian N. Turner ◽  
Scott A Gold

Purpose – The purpose of this paper is to critically review the literature related to dimensional accuracy and surface roughness for fused deposition modeling and similar extrusion-based additive manufacturing or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature was carried out by focusing on the relationship between process and product design parameters and the dimensional and surface properties of finished parts. Methods for evaluating these performance parameters are also reviewed. Findings – Fused deposition modeling® and related processes are the most widely used polymer rapid prototyping processes. For many applications, resolution, dimensional accuracy and surface roughness are among the most important properties in final parts. The influence of feedstock properties and system design on dimensional accuracy and resolution is reviewed. Thermal warping and shrinkage are often major sources of dimensional error in finished parts. This phenomenon is explored along with various approaches for evaluating dimensional accuracy. Product design parameters, in particular, slice height, strongly impact surface roughness. A geometric model for surface roughness is also reviewed. Originality/value – This represents the first review of extrusion AM processes focusing on dimensional accuracy and surface roughness. Understanding and improving relationships between materials, design parameters and the ultimate properties of finished parts will be key to improving extrusion AM processes and expanding their applications.


2017 ◽  
Vol 23 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Anderson Vicente Borille ◽  
Jefferson de Oliveira Gomes ◽  
Daniel Lopes

Purpose Flame-retardant plastics are used in critical applications, such as aircraft interior parts, when the occurrence of fire can lead to serious injury to people. However, there is a lack of related publications. The purpose of this study is to present experimental data regarding geometrical analysis, such as dimensional accuracy and surface roughness, tensile strength and elongation of parts manufactured with flame-retardant materials by additive manufacturing. Design/methodology/approach Two additive manufacturing processes, selective laser sintering (SLS) and fused deposition modeling (FDM), were selected to manufacture the parts to be evaluated. Each process used its respective polymer, that is polyamide with flame-retardant additive (PA) for SLS and polyphenylsulfone (PPSF) for FDM. The samples consist of tensile specimens and representative parts of different products. Tensile tests were performed using standard tensile test machines, and geometrical analyses were performed using coordinate measuring machine as well as surface roughness tester. Findings As each material can be, in commercial machines, produced by only one process, the material selection for final products has to consider the manufacturing process as well. In general, although the FDM/PPSF process provided specimens with the highest ultimate strength, because of its strong influence by the building direction, FDM/PPSF also provided the lowest strength. SLS/PA was able to provide average strength with less dependency on the build-up direction. The geometrical analysis showed that SLS/PA presents a much smoother surface, but FDM/PPSF presented slightly better dimensional accuracy. Originality/value There is still lack of publications on polymers with flame resistance or flame-retardant polymers. Thus, this paper brings new technical information about processing such materials.


2017 ◽  
Vol 23 (5) ◽  
pp. 845-857 ◽  
Author(s):  
Parlad Kumar Garg ◽  
Rupinder Singh ◽  
IPS Ahuja

Purpose The purpose of this paper is to optimize the process parameters to obtain the best dimensional accuracy, surface finish and hardness of the castings produced by using fused deposition modeling (FDM)-based patterns in investment casting (IC). Design/methodology/approach In this paper, hip implants have been prepared by using plastic patterns in IC process. Taguchi design of experiments has been used to study the effect of six different input process parameters on the dimensional deviation, surface roughness and hardness of the implants. Analysis of variance has been used to find the effect of each input factor on the output. Multi-objective optimization has been done to find the combined best values of output. Findings The results proved that the FDM patterns can be used successfully in IC. A wax coating on the FDM patterns improves the surface finish and dimensional accuracy. The improved dimensional accuracy, surface finish and hardness have been achieved simultaneously through multi-objective optimization. Research limitations/implications A thin layer of wax is used on the plastic patterns. The effect of thickness of the layer has not been considered. Further research is needed to study the effect of the thickness of the wax layer. Practical implications The results obtained by the study would be helpful in making decisions regarding machining and/or coating on the parts produced by this process. Originality/value In this paper, multi-objective optimization of dimensional accuracy, surface roughness and hardness of hybrid investment cast components has been performed.


Author(s):  
Yadunund Vijay ◽  
Naresh D. Sanandiya ◽  
Stylianos Dritsas ◽  
Javier G. Fernandez

We present an additive manufacturing system for 3D printing large-scale objects using natural bio-composite materials. The process, affine to the Direct Ink Writing method, achieves build rate of 2.5cm3/s using a precision dispensing unit mounted on an industrial six-axis robot. During deposition the composite is wet and exhibits thixotropy. As it loses moisture it hardens and shrinks anisotropically. This paper highlights work on controlling the process settings to print filaments of desired dimensions while constraining the operating point to a region where tensile strength is maximum while shrinkage is minimum. Response surface models relating the controllable process settings such as Robot Linear Velocity, Material Feed Rate and Nozzle Offset, to the geometric and physical properties of an extruded filament, are obtained through Face-centered Central Composite Designed experiments. Unlike traditional applications of this technique which involve identifying a fixed optimal operating point, we use these models to first uncover the possible dimensions of a filament that can be obtained within operating boundaries of our system. Process setting predictions are then made through multi-objective optimization of the mathematical models. An interesting outcome of our study is the ability to produce filaments of different shrinkage and tensile strength properties, by solely changing process settings. As a follow up, we identify the optimal lateral overlap and inter-layer spacing parameters to define toolpaths to print 3D structures. If unoptimized, the material’s anisotropic shrinkage and non-linear compression characteristics cause severe delamination, cross-sectional tapering and warpage. Lastly, we show the linear scalability of our shrinkage model in 3D space which allows us to suitably compensate toolpaths to significantly improve dimensional accuracy of 3D printed artifacts.


2014 ◽  
Vol 20 (6) ◽  
pp. 480-489 ◽  
Author(s):  
Palash Kumar Maji ◽  
Amit Jyoti Banerjee ◽  
Partha Sarathi Banerjee ◽  
Sankar Karmakar

Purpose – The purpose of this paper was development of patient-specific femoral prosthesis using rapid prototyping (RP), a part of additive manufacturing (AM) technology, and comparison of its merits or demerits over CNC machining route. Design/methodology/approach – The customized femoral prosthesis was developed through computed tomography (CT)-3D CAD-RP-rapid tooling (RT)-investment casting (IC) route using a stereolithography apparatus (SLA-250) RP machine. A similar prosthesis was also developed through conventional CT-CAD-CAM-CNC, using RP models to check the fit before machining. The dimensional accuracy, surface finish, cost and time involvement were compared between these two routes. Findings – In both the routes, RP had an important role in checking the fit. Through the conventional machining route, higher-dimensional accuracies and surface finish were achieved. On the contrary, RP route involved lesser time and cost, with rougher surface finish on the prosthesis surface and less internal shrinkage porosity. The rougher surface finish of the prosthesis is favourable for bone ingrowths after implantation and porosity reduce the effective stiffness of the prosthesis, leading to reduced stress shielding effect after implantation. Research limitations/implications – As there is no AM machine for direct fabrication of metallic component like laser engineered net shaping and electron beam melting in our Institute, the metallic prosthesis was developed through RP-RT-IC route using the SLA-250 machine. Practical implications – The patient-specific prosthesis always provides better fit and favourable stress distribution, leading to longer life of the prosthesis. The described RP route can be followed to develop the customized prosthesis at lower price within the shortest time. Originality/value – The described methodology of customized prosthesis development through the AM route and its advantages are applicable for development of any metallic prostheses.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Atin Sumihartati ◽  
Wiah Wardiningsih ◽  
Naelly Al Kautsar ◽  
Muhammad Permana ◽  
Samuel Pradana ◽  
...  

Purpose The purpose of this study is to explore the potential of Cordyline Australis fibers as an alternate raw material for textile. Design/methodology/approach The water retting method was used to extract the fiber. Cordyline Australis fibers were characterized in terms of the morphology of fibers (fiber cross-sectional and longitudinal), fiber chemical functional groups, tensile strength and elongation, fineness, fiber length, moisture regain and friction coefficient. Findings Cordyline Australis fiber strands consist of several individual fibers. At the longitudinal section, the fiber cells appeared as long cylindrical tubes with a rough surface. The cross-section of the Cordyline Australis fibers was irregular but some were oval. The key components in the fibers were cellulose, hemicellulose and lignin. The tensile strength of the fiber per bundle was 2.5 gf/den. The elongation of fibers was 13.15%. The fineness of fiber was 8.35 Tex. The average length of the fibers was 54.72 cm. Moisture Regain for fiber was 8.59%. The friction coefficient of fibers was 0.16. The properties of the fiber showed that the Cordyline Australis fiber has the potential to be produced into yarn. Originality/value To the best of the author's knowledge, there is no scientific article focused on the Cordyline Australis fibers. Natural fibers from the leaves of the Cordyline Australis plant could be used as an alternate material for textile.


2020 ◽  
Vol 19 (01) ◽  
pp. 107-130 ◽  
Author(s):  
R. Borrelli ◽  
S. Franchitti ◽  
C. Pirozzi ◽  
L. Carrino ◽  
L. Nele ◽  
...  

Additive manufacturing (AM), applied to metal industry, is a family of processes that allows complex shape components to be realized from raw materials in the form of powders. Electron beam melting (EBM) is a relatively new additive manufacturing (AM) technology. Similar to electron-beam welding, EBM utilizes a high-energy electron beam as a moving heat source to melt metal powder, and 3D parts are produced in a layer-building fashion by rapid self-cooling. By EBM, it is possible to realize metallic complex shape components, e.g. fine network structures, internal cavities and channels, which are difficult to make by conventional manufacturing means. This feature is of particular interest in titanium industry in which numerous efforts are done to develop near net shape processes. In the field of mechanical engineering and, in particular, in the aerospace industry, it is crucial for quality certification purpose that components are produced through qualified and robust manufacturing processes ensuring high product repeatability. The contribution of the present work is to experimentally identify the EBM job parameters (sample orientation, location of the sample in the layer and height in the build chamber) that influence the dimensional accuracy and the surface roughness of the manufactured parts in Ti6Al4V. The repeatability of EBM is investigated too.


2017 ◽  
Vol 23 (6) ◽  
pp. 1226-1236 ◽  
Author(s):  
Ashu Garg ◽  
Anirban Bhattacharya ◽  
Ajay Batish

Purpose The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and freeform surfaces of fused deposition modelling (FDM) specimens build at different part building orientations. Design/methodology/approach Parts with different primitive and curved surfaces are designed and modelled to build at three different part orientations along X orientation (vertical position resting on side face), Y orientation (horizontal position resting on base) and Z orientation (upright position). Later, the parts are post-processed by cold vapours of acetone. Geometric accuracy and surface roughness are measured both before and after the chemical treatment to investigate the change in geometric accuracy, surface roughness of FDM parts. Findings The results indicate that surface roughness is reduced immensely after cold vapour treatment with minimum variation in geometric accuracy of parts. Parts build vertically over its side face (X orientation) provides the overall better surface finish and geometric accuracy. Originality/value The present study provides an approach of post-built treatment for FDM parts and observes a significant improvement in surface finish of the components. The present approach of post-built treatment can be adopted to enhance the surface quality as well as to achieve desired geometric accuracy for different primitive, freeform/curved surfaces of FDM samples suitable for functional components as well as prototypes.


Sign in / Sign up

Export Citation Format

Share Document