scholarly journals Brake Fault Identification and Fault-Tolerant Directional Stability Control of Heavy Road Vehicles

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 169229-169246
Author(s):  
Radhika Raveendran ◽  
K. B. Devika ◽  
Shankar C. Subramanian
2016 ◽  
Vol 136 (2) ◽  
pp. 143-156 ◽  
Author(s):  
Katsuhiko Fuwa ◽  
Tatsuo Narikiyo ◽  
Tatsushi Ooba

2020 ◽  
pp. 002029402097757
Author(s):  
Jinwei Sun ◽  
Jingyu Cong ◽  
Weihua Zhao ◽  
Yonghui Zhang

An integrated fault tolerant controller is proposed for vehicle chassis system. Based on the coupled characteristics of vertical and lateral system, the fault tolerant controller mainly concentrates on the cooperative control of controllable suspension and lateral system with external disturbances and actuator faults. A nine-DOF coupled model is developed for fault reconstruction and accurate control. Firstly, a fault reconstruction mechanism based on sliding mode is introduced; when the sliding mode achieves, actuator fault signals can be observed exactly through selecting appropriate gain matrix and equivalent output injection term. Secondly, an active suspension controller, a roll moment controller and a stability controller is developed respectively; the integrated control strategy is applied to the system under different driving conditions: when the car is traveling straightly, the main purpose of the integrated strategy is to improve the vertical performance; the lateral controller including roll moment control and stability control will be triggered when there is a steering angle input. Simulations experiments verify the performance enhancement and stability of the proposed controller under three different driving conditions.


Author(s):  
Ozan Temiz ◽  
Melih Cakmakci ◽  
Yildiray Yildiz

This paper presents an integrated fault-tolerant adaptive control allocation strategy for four wheel frive - four wheel steering ground vehicles to increase yaw stability. Conventionally, control of brakes, motors and steering angles are handled separately. In this study, these actuators are controlled simultaneously using an adaptive control allocation strategy. The overall structure consists of two steps: At the first level, virtual control input consisting of the desired traction force, the desired moment correction and the required lateral force correction to maintain driver’s intention are calculated based on the driver’s steering and throttle input and vehicle’s side slip angle. Then, the allocation module determines the traction forces at each wheel, front steering angle correction and rear steering wheel angle, based on the virtual control input. Proposed strategy is validated using a non-linear three degree of freedom reduced two-track vehicle model and results demonstrate that the vehicle can successfully follow the reference motion while protecting yaw stability, even in the cases of device failure and changed road conditions.


Author(s):  
Lu Yang ◽  
Ming Yue ◽  
Jie Wang ◽  
Wenbin Hou

This paper presents a directional stability control based on robust tube-based model predictive control (RMPC) approach for an overactuated electric vehicle after tire blowout on curved expressway, in the presence of the exogenous disturbances, such as cross wind and road variation. To begin with, the vehicle dynamic simulation platform allowing for the tire vertical force redistribution after tire blowout is presented, and the reliability of the platform is further analyzed by comparing with the existing experimental test results. After that, a RMPC-based controller is designed to enhance the directional stability performance of the vehicle on curved expressway after tire burst. Also, a pseudo inverse switch control allocator is developed to realize the allocation of the desired resultant signal for the remained effective wheels at the last stage. In the end, the simulation results conducting on the depicted simulation platform demonstrate the favorable maneuverability of the proposed method over the conventional model predictive control (MPC) in enhancing directional stability performance of the vehicle after a tire blowout on curved expressway.


1972 ◽  
Vol 14 (7) ◽  
pp. 6-13
Author(s):  
M. C. Eames

The problems of stability and control of high-speed craft are somewhat different for the various vehicle types. The first part of this paper briefly compares characteristics of air-cushion vehicles and planing craft. This is followed by a more detailed discussion of the problems and requirements of hydrofoil craft.


Sign in / Sign up

Export Citation Format

Share Document