scholarly journals MR damper modeling performance comparison including hysteresis and damper optimization

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hrishikesh Zambare ◽  
Abhishek Khoje ◽  
Surendra Patil ◽  
Ali Razban
2014 ◽  
Vol 15 (3) ◽  
pp. 1305-1310
Author(s):  
Young-Chul Kwon ◽  
Sam-Jin Park ◽  
Ki-Young Kim ◽  
Dae-Sung Baek ◽  
Seok-Hyun Lee

2014 ◽  
Vol 660 ◽  
pp. 863-867
Author(s):  
Izyan Iryani Mohd Yazid ◽  
Saiful Amri Mazlan ◽  
Takehito Kikuchi ◽  
Hairi Zamzuri

This paper presents performance comparison of Magnetorheological (MR) damper with two different coil arrangements. Two coils at different location have been introduced that could enhance the activation areas in the MR damper. The experimental tests were conducted in three different conditions of coil; internal coils, external coils and the combination of coils. For each trial, the effect of the applied current and the condition of coils were analyzed and investigated. The results showed that the internal coil could produce higher damping force than the external coil, and the combination of internal and external coils could increase the damping force up to 125 N for the same experimental parameters.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1556-1562 ◽  
Author(s):  
KUM-GIL SUNG ◽  
SEUNG-BOK CHOI ◽  
HO-GUEN LEE ◽  
KYUNG-WON MIN ◽  
SANG-HYUN LEE

In this work, three different magneto-rheological(MR) dampers, which are applicable for vibration control of a multi-story structure, are devised and their performance characteristics are compared. As a first step, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints. The analytical models to predict the field-dependent damping forces are derived for each type and their damping forces are evaluated. The field-dependent damping forces are compared in terms of the damping force magnitude and the mixed-mode type of MR damper is chosen as an optimal candidate for the vibration control of the multi-story structure. An appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. In addition, the displacement vs. damping force cycles of the piston are observed at various field intensities.


Author(s):  
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.


1999 ◽  
Author(s):  
C-C. Chen ◽  
C. Lai ◽  
T. Shih

2004 ◽  
Author(s):  
C. Chen ◽  
K. Chang ◽  
T. Lin ◽  
C. Hsu ◽  
Y. Lee ◽  
...  

2008 ◽  
Vol 58 (2) ◽  
pp. 133
Author(s):  
Ji Eun Seok ◽  
Seon Jeong Min ◽  
Seong Whi Cho ◽  
Ik Won Kang ◽  
Dae Hyun Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document