scholarly journals Intrusion Detection based on Sequential Information preserving Log Embedding Methods and Anomaly Detection Algorithms

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Czangyeob Kim ◽  
Myeongjun Jang ◽  
Seungwan Seo ◽  
Kyeongchan Park ◽  
Pilsung Kang
2021 ◽  
Vol 17 (1) ◽  
pp. 1-12
Author(s):  
Ayad Jabbar

The problem of outlier detection is one of the most important issues in the field of analysis due to its applicability in several famous problem domains, including intrusion detection, security, banks, fraud detection, and discovery of criminal activities in electronic commerce. Anomaly detection comprises two main approaches: supervised and unsupervised approach. The supervised approach requires pre-defined information, which is defined as the type of outliers, and is difficult to be defined in some applications. Meanwhile, the second approach determines the outliers without human interaction. A review of the unsupervised approach, which shows the main advantages and the limitations considering the studies performed in the supervised approach, is introduced in this paper. This study indicated that the unsupervised approach suffers from determining local and global outlier objects simultaneously as the main problem related to algorithm parameterization. Moreover, most algorithms do not rank or identify the degree of being an outlier or normal objects and required different parameter settings by the research. Examples of such parameters are the radius of neighborhood, number of neighbors within the radius, and number of clusters. A comprehensive and structured overview of a large set of interesting outlier algorithms, which emphasized the outlier detection limitation in the unsupervised approach, can be used as a guideline for researchers who are interested in this field.


Author(s):  
Alireza Vafaei Sadr ◽  
Bruce A. Bassett ◽  
M. Kunz

AbstractAnomaly detection is challenging, especially for large datasets in high dimensions. Here, we explore a general anomaly detection framework based on dimensionality reduction and unsupervised clustering. DRAMA is released as a general python package that implements the general framework with a wide range of built-in options. This approach identifies the primary prototypes in the data with anomalies detected by their large distances from the prototypes, either in the latent space or in the original, high-dimensional space. DRAMA is tested on a wide variety of simulated and real datasets, in up to 3000 dimensions, and is found to be robust and highly competitive with commonly used anomaly detection algorithms, especially in high dimensions. The flexibility of the DRAMA framework allows for significant optimization once some examples of anomalies are available, making it ideal for online anomaly detection, active learning, and highly unbalanced datasets. Besides, DRAMA naturally provides clustering of outliers for subsequent analysis.


2014 ◽  
Vol 530-531 ◽  
pp. 705-708
Author(s):  
Yao Meng

This paper first engine starting defense from Intrusion Detection, Intrusion detection engine analyzes the hardware platform, the overall structure of the technology and the design of the overall structure of the plug, which on the whole structure from intrusion defense systems were designed; then described in detail improved DDOS attack detection algorithm design thesis, and the design of anomaly detection algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 201
Author(s):  
Qinfeng Xiao ◽  
Jing Wang ◽  
Youfang Lin ◽  
Wenbo Gongsa ◽  
Ganghui Hu ◽  
...  

We address the problem of unsupervised anomaly detection for multivariate data. Traditional machine learning based anomaly detection algorithms rely on specific assumptions of normal patterns and fail to model complex feature interactions and relations. Recently, existing deep learning based methods are promising for extracting representations from complex features. These methods train an auxiliary task, e.g., reconstruction and prediction, on normal samples. They further assume that anomalies fail to perform well on the auxiliary task since they are never trained during the model optimization. However, the assumption does not always hold in practice. Deep models may also perform the auxiliary task well on anomalous samples, leading to the failure detection of anomalies. To effectively detect anomalies for multivariate data, this paper introduces a teacher-student distillation based framework Distillated Teacher-Student Network Ensemble (DTSNE). The paradigm of the teacher-student distillation is able to deal with high-dimensional complex features. In addition, an ensemble of student networks provides a better capability to avoid generalizing the auxiliary task performance on anomalous samples. To validate the effectiveness of our model, we conduct extensive experiments on real-world datasets. Experimental results show superior performance of DTSNE over competing methods. Analysis and discussion towards the behavior of our model are also provided in the experiment section.


Sign in / Sign up

Export Citation Format

Share Document