Dangerous Object Detection for Visually Impaired People using Computer Vision

Author(s):  
Harsh Shah ◽  
Rishi Shah ◽  
Shlok Shah ◽  
Paawan Sharma
Author(s):  
Fereshteh S. Bashiri ◽  
Eric LaRose ◽  
Jonathan C. Badger ◽  
Roshan M. D’Souza ◽  
Zeyun Yu ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 941
Author(s):  
Rakesh Chandra Joshi ◽  
Saumya Yadav ◽  
Malay Kishore Dutta ◽  
Carlos M. Travieso-Gonzalez

Visually impaired people face numerous difficulties in their daily life, and technological interventions may assist them to meet these challenges. This paper proposes an artificial intelligence-based fully automatic assistive technology to recognize different objects, and auditory inputs are provided to the user in real time, which gives better understanding to the visually impaired person about their surroundings. A deep-learning model is trained with multiple images of objects that are highly relevant to the visually impaired person. Training images are augmented and manually annotated to bring more robustness to the trained model. In addition to computer vision-based techniques for object recognition, a distance-measuring sensor is integrated to make the device more comprehensive by recognizing obstacles while navigating from one place to another. The auditory information that is conveyed to the user after scene segmentation and obstacle identification is optimized to obtain more information in less time for faster processing of video frames. The average accuracy of this proposed method is 95.19% and 99.69% for object detection and recognition, respectively. The time complexity is low, allowing a user to perceive the surrounding scene in real time.


2021 ◽  
Vol 33 (11) ◽  
pp. 4057
Author(s):  
Tias Kurniati ◽  
Chuan-Kai Yang ◽  
Tzer-Shyong Chen ◽  
Yu-Fang Chung ◽  
Yu-Min Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document