Datapath oriented codesign method of application specific DSPs using retargetable compiler

Author(s):  
N. Ishiura ◽  
T. Watanabe
2012 ◽  
Vol E95-C (4) ◽  
pp. 534-545 ◽  
Author(s):  
Wei ZHONG ◽  
Takeshi YOSHIMURA ◽  
Bei YU ◽  
Song CHEN ◽  
Sheqin DONG ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 174-180
Author(s):  
Poonam Sharma ◽  
Ashwani Kumar Dubey ◽  
Ayush Goyal

Background: With the growing demand of image processing and the use of Digital Signal Processors (DSP), the efficiency of the Multipliers and Accumulators has become a bottleneck to get through. We revised a few patents on an Application Specific Instruction Set Processor (ASIP), where the design considerations are proposed for application-specific computing in an efficient way to enhance the throughput. Objective: The study aims to develop and analyze a computationally efficient method to optimize the speed performance of MAC. Methods: The work presented here proposes the design of an Application Specific Instruction Set Processor, exploiting a Multiplier Accumulator integrated as the dedicated hardware. This MAC is optimized for high-speed performance and is the application-specific part of the processor; here it can be the DSP block of an image processor while a 16-bit Reduced Instruction Set Computer (RISC) processor core gives the flexibility to the design for any computing. The design was emulated on a Xilinx Field Programmable Gate Array (FPGA) and tested for various real-time computing. Results: The synthesis of the hardware logic on FPGA tools gave the operating frequencies of the legacy methods and the proposed method, the simulation of the logic verified the functionality. Conclusion: With the proposed method, a significant improvement of 16% increase in throughput has been observed for 256 steps iterations of multiplier and accumulators on an 8-bit sample data. Such an improvement can help in reducing the computation time in many digital signal processing applications where multiplication and addition are done iteratively.


Author(s):  
Shrikant S. Jadhav ◽  
Clay Gloster ◽  
Jannatun Naher ◽  
Christopher Doss ◽  
Youngsoo Kim

Sign in / Sign up

Export Citation Format

Share Document