Multi-Source Domain Adaptation with Weak Supervision for Early Fake News Detection

Author(s):  
Yichuan Li ◽  
Kyumin Lee ◽  
Nima Kordzadeh ◽  
Brenton Faber ◽  
Cameron Fiddes ◽  
...  
2021 ◽  
pp. 1-7
Author(s):  
Rong Chen ◽  
Chongguang Ren

Domain adaptation aims to solve the problems of lacking labels. Most existing works of domain adaptation mainly focus on aligning the feature distributions between the source and target domain. However, in the field of Natural Language Processing, some of the words in different domains convey different sentiment. Thus not all features of the source domain should be transferred, and it would cause negative transfer when aligning the untransferable features. To address this issue, we propose a Correlation Alignment with Attention mechanism for unsupervised Domain Adaptation (CAADA) model. In the model, an attention mechanism is introduced into the transfer process for domain adaptation, which can capture the positively transferable features in source and target domain. Moreover, the CORrelation ALignment (CORAL) loss is utilized to minimize the domain discrepancy by aligning the second-order statistics of the positively transferable features extracted by the attention mechanism. Extensive experiments on the Amazon review dataset demonstrate the effectiveness of CAADA method.


2021 ◽  
pp. 108238
Author(s):  
Yueming Yin ◽  
Zhen Yang ◽  
Haifeng Hu ◽  
Xiaofu Wu

Author(s):  
Hang Li ◽  
Xi Chen ◽  
Ju Wang ◽  
Di Wu ◽  
Xue Liu

WiFi-based Device-free Passive (DfP) indoor localization systems liberate their users from carrying dedicated sensors or smartphones, and thus provide a non-intrusive and pleasant experience. Although existing fingerprint-based systems achieve sub-meter-level localization accuracy by training location classifiers/regressors on WiFi signal fingerprints, they are usually vulnerable to small variations in an environment. A daily change, e.g., displacement of a chair, may cause a big inconsistency between the recorded fingerprints and the real-time signals, leading to significant localization errors. In this paper, we introduce a Domain Adaptation WiFi (DAFI) localization approach to address the problem. DAFI formulates this fingerprint inconsistency issue as a domain adaptation problem, where the original environment is the source domain and the changed environment is the target domain. Directly applying existing domain adaptation methods to our specific problem is challenging, since it is generally hard to distinguish the variations in the different WiFi domains (i.e., signal changes caused by different environmental variations). DAFI embraces the following techniques to tackle this challenge. 1) DAFI aligns both marginal and conditional distributions of features in different domains. 2) Inside the target domain, DAFI squeezes the marginal distribution of every class to be more concentrated at its center. 3) Between two domains, DAFI conducts fine-grained alignment by forcing every target-domain class to better align with its source-domain counterpart. By doing these, DAFI outperforms the state of the art by up to 14.2% in real-world experiments.


Author(s):  
Renjun Xu ◽  
Pelen Liu ◽  
Yin Zhang ◽  
Fang Cai ◽  
Jindong Wang ◽  
...  

Domain adaptation (DA) has achieved a resounding success to learn a good classifier by leveraging labeled data from a source domain to adapt to an unlabeled target domain. However, in a general setting when the target domain contains classes that are never observed in the source domain, namely in Open Set Domain Adaptation (OSDA), existing DA methods failed to work because of the interference of the extra unknown classes. This is a much more challenging problem, since it can easily result in negative transfer due to the mismatch between the unknown and known classes. Existing researches are susceptible to misclassification when target domain unknown samples in the feature space distributed near the decision boundary learned from the labeled source domain. To overcome this, we propose Joint Partial Optimal Transport (JPOT), fully utilizing information of not only the labeled source domain but also the discriminative representation of unknown class in the target domain. The proposed joint discriminative prototypical compactness loss can not only achieve intra-class compactness and inter-class separability, but also estimate the mean and variance of the unknown class through backpropagation, which remains intractable for previous methods due to the blindness about the structure of the unknown classes. To our best knowledge, this is the first optimal transport model for OSDA. Extensive experiments demonstrate that our proposed model can significantly boost the performance of open set domain adaptation on standard DA datasets.


2021 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Cong Fu ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


Author(s):  
Jyoti Sandesh Deshmukh ◽  
Amiya Kumar Tripathy ◽  
Dilendra Hiran

An increase in use of web produces large content of information about products. Online reviews are used to make decision by peoples. Opinion mining is vast research area in which different types of reviews are analyzed. Several issues are existing in this area. Domain adaptation is emerging issue in opinion mining. Labling of data for every domain is time consuming and costly task. Hence the need arises for model that train one domain and applied it on other domain reducing cost aswell as time. This is called domain adaptation which is addressed in this paper. Using maximum entropy and clustering technique source domains data is trained. Trained data from source domain is applied on target data to labeling purpose A result shows moderate accuracy for 5 fold cross validation and combination of source domains for Blitzer et al (2007) multi domain product dataset.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1994
Author(s):  
Ping Li ◽  
Zhiwei Ni ◽  
Xuhui Zhu ◽  
Juan Song ◽  
Wenying Wu

Domain adaptation manages to learn a robust classifier for target domain, using the source domain, but they often follow different distributions. To bridge distribution shift between the two domains, most of previous works aim to align their feature distributions through feature transformation, of which optimal transport for domain adaptation has attract researchers’ interest, as it can exploit the local information of the two domains in the process of mapping the source instances to the target ones by minimizing Wasserstein distance between their feature distributions. However, it may weaken the feature discriminability of source domain, thus degrade domain adaptation performance. To address this problem, this paper proposes a two-stage feature-based adaptation approach, referred to as optimal transport with dimensionality reduction (OTDR). In the first stage, we apply the dimensionality reduction with intradomain variant maximization but source intraclass compactness minimization, to separate data samples as much as possible and enhance the feature discriminability of the source domain. In the second stage, we leverage optimal transport-based technique to preserve the local information of the two domains. Notably, the desirable properties in the first stage can mitigate the degradation of feature discriminability of the source domain in the second stage. Extensive experiments on several cross-domain image datasets validate that OTDR is superior to its competitors in classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document