Classification of COVID-19 using Deep Learning and Radiomic Texture Features extracted from CT scans of Patients Lungs

Author(s):  
Jayalakshmi Mangalagiri ◽  
Jones Sam Sugumar ◽  
Sumeet Menon ◽  
David Chapman ◽  
Yaacov Yesha ◽  
...  
2021 ◽  
Vol 66 (3) ◽  
pp. 2923-2938
Author(s):  
Muhammad Attique Khan ◽  
Nazar Hussain ◽  
Abdul Majid ◽  
Majed Alhaisoni ◽  
Syed Ahmad Chan Bukhari ◽  
...  
Keyword(s):  

Author(s):  
Giovanni Da Silva ◽  
Aristófanes Silva ◽  
Anselmo De Paiva ◽  
Marcelo Gattass

Lung cancer presents the highest mortality rate, besides being one of the smallest survival rates after diagnosis. Thereby, early detection is extremely important for the diagnosis and treatment. This paper proposes three different architectures of Convolutional Neural Network (CNN), which is a deep learning technique, for classification of malignancy of lung nodules without computing the morphology and texture features. The methodology was tested onto the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), with the best accuracy of 82.3%, sensitivity of 79.4% and specificity 83.8%.


Author(s):  
Fakrul Islam Tushar ◽  
Vincent M. D'Anniballe ◽  
Rui Hou ◽  
Maciej A. Mazurowski ◽  
Wanyi Fu ◽  
...  

Author(s):  
Rohan Abraham ◽  
Ian Janzen ◽  
Saeed Seyyedi ◽  
Sukhinder Khattra ◽  
John Mayo ◽  
...  

Author(s):  
Shamik Tiwari

The classification of plants is one of the most important aims for botanists since plants have a significant part in the natural life cycle. In this work, a leaf-based automatic plant classification framework is investigated. The aim is to compare two different deep learning approaches named Deep Neural Network (DNN) and deep Convolutional Neural Network (CNN). In the case of deep neural network, hybrid shapes and texture features are utilized as hand-crafted features while in the case of the convolution non-handcraft, features are applied for classification. The offered frameworks are evaluated with a public leaf database. From the simulation results, it is confirmed that the deep CNN-based deep learning framework demonstrates superior classification performance than the handcraft feature based approach.


Author(s):  
Mustafa Kara ◽  
Zeynep Öztürk ◽  
Sergin Akpek ◽  
Ayşegül Turupcu

Advancements in deep learning and availability of medical imaging data have led to use of CNN based architectures in disease diagnostic assisted systems. In spite of the abundant use of reverse transcription-polymerase chain reaction (RT-PCR) based tests in COVID-19 diagnosis, CT images offer an applicable supplement with its high sensitivity rates. Here, we study classification of COVID-19 pneumonia (CP) and non-COVID-19 pneumonia (NCP) in chest CT scans using efficient deep learning methods to be readily implemented by any hospital. We report our deep network framework design that encompasses Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory (biLSTM) architectures. Our study achieved high specificity (CP: 98.3%, NCP: 96.2% Healthy: 89.3%) and high sensitivity (CP: 84.0%, NCP: 93.9% Healthy: 94.9%) in classifying COVID-19 pneumonia, non-COVID-19 pneumonia and healthy patients. Next, we provide visual explanations for the CNN predictions with gradient-weighted class activation mapping (Grad-CAM). The results provided a model explainability by showing that Ground Glass Opacities (GGO), indicators of COVID-19 pneumonia disease, were captured by our CNN network. Finally, we have implemented our approach in three hospitals proving its compatibility and efficiency.


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


Sign in / Sign up

Export Citation Format

Share Document