Normal force control for a pin-on-disk tribometer including active or passive suppression of vertical vibrations

Author(s):  
Danijel Pavkovic ◽  
Nenad Kranjcevic ◽  
Milan Kostelac ◽  
Zvonko Herold ◽  
Josko Deur
Author(s):  
H. Ali Razavi ◽  
Steven Danyluk ◽  
Thomas R. Kurfess

This paper explores the limitations of a previously reported indentation model that correlated the depth of plastic deformation and the normal component of the grinding force. The indentation model for grinding is studied using force control grinding of gamma titanium aluminide (TiAl-γ). Reciprocating surface grinding is carried out for a range of normal force 15–90 N, a cutting depth of 20–40 μm and removal rate of 1–9 mm3/sec using diamond, cubic boron nitride (CBN) and aluminum oxide (Al2O3) abrasives. The experimental data show that the indentation model for grinding is a valid approximation when the normal component of grinding force exceeds some value that is abrasive dependent.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (10) ◽  
pp. 41-48 ◽  
Author(s):  
H.S. Kong ◽  
M.F. Ashby

Friction is often a nuisance, but it can be useful too. Brakes, clutches, and tires rely on it, of course, though the inevitable fractional heat remains a problem. Other applications use frictional heat: friction cutting and welding, skiing, skating, and curling. The damage to magnetic disks caused by head-disk contact and the striking of matches are also examples.This article illustrates a framework where the thermal aspects of friction can be analyzed in an informative way. It uses a unified approach to the calculation of flash and bulk heating, and a helpful diagram—the frictional temperature map—to display the results. The method is approximate, but the approximations have been carefully chosen and calibrated to give precision adequate to most tasks, and the gain in simplicity is great.The symbols used in this article are defined in Table I.When two contacting solids 1 and 2, pressed together by a normal force F, slide at a relative velocity ν and with coefficient of friction ü, heat is generated at the surface where they meet. The heat generated, q, per unit of nominal contact area, An, per second isThe heat flows into the two solids, partitioned between them in a way that depends on their geometry and thermal properties. Figure 1 shows one geometry commonly used for laboratory tests: the pin-on-disk configuration. The pin is identified by the subscript 1, the disk by subscript 2. Solid 1 can have properties which differ from those of solid 2.


Author(s):  
Guohong Xie ◽  
Ji Zhao ◽  
Xin Wang ◽  
Huan Liu ◽  
Yan Mu ◽  
...  

In the abrasive belt grinding process, there are factors affecting the machining stability, efficiency, and quality. Based on the analysis of the grinding process, the normal force in the contact area between the abrasive belt and the workpiece is a major factor. By comparing constant force and non-constant force grinding, the results imply that keeping the grinding force constant will achieve desired material removal and better surface quality. The phenomenon of over- and under-cutting of the workpieces can also be avoided by a constant normal force. In this article, a controllable and flexible belt grinding mechanism accompanied with a mechanical decoupling control strategy is built and tested. Afterward, a detailed comparison is made between the traditional force-position coupling system and the proposed decoupling control system. The proposed control system suppresses the interference between the position and force control systems. The contact force is directly measured and controlled without detecting the position of other components in the tool system. The complexity of the control system is thereby reduced. Finally, several grinding experiments are carried out. The standard deviation and coefficient of variation of the measured normal force are kept within 0.25 and 0.02, respectively. The experiment results reveal that the mechanical decoupling system performs well in force control compared with the traditional force-position coupling system. In addition, the surface roughness Ra < 0.4 μm, the surface quality of the workpiece is improved significantly with the constant force controller.


2013 ◽  
Vol 315 ◽  
pp. 616-620 ◽  
Author(s):  
Mona Tahmasebi ◽  
Roslan Abdul Rahman ◽  
Musa Mailah ◽  
Mohammad Gohari

Distribution pattern of spray boom in fields is affected by several parameters which one of the important reasons is horizontal and vertical vibrations because of unevenness surfaces. Spray boom movements lead to decrease of spread efficiency and crop yield. Generally, active suspension is employed to control and attenuate the vibration of sprayer booms because these suspensions reduce the high frequency vibration of spray booms thanks to irregularities soil. In this research, a proportional-integral-derivative controller with active force control is used to remove undesired rolling of spray boom. Simulation results depict that the proposed scheme is more effective and accurate than PID control only scheme. The AFC based scheme shows the robustness and accuracy compared to the PID controller.


1997 ◽  
Vol 42 (6) ◽  
pp. 803-818 ◽  
Author(s):  
K.A. Unyelioglu ◽  
U. Ozguner ◽  
T. Hissong ◽  
J. Winkelman

PAMM ◽  
2003 ◽  
Vol 2 (1) ◽  
pp. 68-69 ◽  
Author(s):  
Martin Rudolph ◽  
Karl Popp

Author(s):  
Jingran Zhang ◽  
Yongda Yan ◽  
Zhenjiang Hu ◽  
Xuesen Zhao

The atomic force microscopy tip-based nanomechanical machining method has already been employed to machine different kinds of nanostructures with the control of the normal force of the tip. The previous studies verified the feasibility of the nanomachining approach with the force control. However, there are still some shortcomings of small normal force, small machining scale, high cost and low machining efficiency. Therefore, in this study, a tip-based micromachining system with normal force closed-loop control is established based on the principle of atomic force microscopy. The control parameters are optimized based on an analysis of the control process to enable the production of a constant normal force during machining when using a tip tool. The maximum machining velocity that can be attained using this system while maintaining a constant normal force is obtained based on an analysis of the normal force variations during machining. By controlling nanoscale accuracy and high-precision stage, more complex microstructures, including microsquares, millimeter-scale microchannels and three-dimensional step microchannels, are successfully fabricated using the proposed force control method. Experimental results show that the tip-based normal force control method is a simple, low-cost and versatile micromachining method with the potential ability to machine more complex structures and is likely to find wider applications in the micromachining field.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meng Xiao ◽  
Tie Zhang ◽  
Yanbiao Zou ◽  
Shouyan Chen

Purpose The purpose of this paper is to propose a robot constant grinding force control algorithm for the impact stage and processing stage of robotic grinding. Design/methodology/approach The robot constant grinding force control algorithm is based on a grinding model and iterative algorithm. During the impact stage, active disturbance rejection control is used to plan the robotic reference contact force, and the robot speed is adjusted according to the error between the robot’s real contact force and the robot’s reference contact force. In the processing stage, an RBF neural network is used to construct a model with the robot's position offset displacement and controlled output, and the increment of control parameters is estimated according to the RBF neural network model. The error of contact force and expected force converges gradually by iterating the control parameters online continuously. Findings The experimental results show that the normal force overshoot of the robot based on the grinding model and iterative algorithm is small, and the processing convergence speed is fast. The error between the normal force and the expected force is mostly within ±3 N. The normal force based on the force control algorithm is more stable than the normal force based on position control, and the surface roughness of the processed workpiece has also been improved, the Ra value compared with position control has been reduced by 24.2%. Originality/value As the proposed approach obtains a constant effect in the impact stage and processing stage of robot grinding and verified by the experiment, this approach can be used for robot grinding for improved machining accuracy.


Sign in / Sign up

Export Citation Format

Share Document