Binary classification with noise via fuzzy weighted least squares twin support vector machine

Author(s):  
Juntao Li ◽  
Yimin Cao ◽  
Yadi Wang ◽  
Xiaoxia Mu ◽  
Liuyuan Chen ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Divya Tomar ◽  
Sonali Agarwal

There is a necessity for analysis of a large amount of data in many fields such as healthcare, business, industries, and agriculture. Therefore, the need of the feature selection (FS) technique for the researchers is quite evident in many fields of science, especially in computer science. Furthermore, an effective FS technique that is best suited to a particular learning algorithm is of great help for the researchers. Hence, this paper proposes a hybrid feature selection (HFS) based efficient disease diagnostic model for Breast Cancer, Hepatitis, and Diabetes. A HFS is an efficient method that combines the positive aspects of both Filter and Wrapper FS approaches. The proposed model adopts weighted least squares twin support vector machine (WLSTSVM) as a classification approach, sequential forward selection (SFS) as a search strategy, and correlation feature selection (CFS) to evaluate the importance of each feature. This model not only selects relevant feature subset but also efficiently deals with the data imbalance problem. The effectiveness of the HFS based WLSTSVM approach is examined on three well-known disease datasets taken from UCI repository with the help of predictive accuracy, sensitivity, specificity, and geometric mean. The experiment confirms that our proposed HFS based WLSTSVM disease diagnostic model can result in positive outcomes.


2019 ◽  
Vol 23 (21) ◽  
pp. 10649-10659 ◽  
Author(s):  
Xiaopeng Hua ◽  
Sen Xu ◽  
Jun Gao ◽  
Shifei Ding

Talanta ◽  
2010 ◽  
Vol 80 (5) ◽  
pp. 1698-1701 ◽  
Author(s):  
Hong-Yan Zou ◽  
Hai-Long Wu ◽  
Hai-Yan Fu ◽  
Li-Juan Tang ◽  
Lu Xu ◽  
...  

Author(s):  
Thế Cường Nguyễn ◽  
Thanh Vi Nguyen

In binary classification problems, two classes of data seem to be different from each other. It is expected to bemore complicated due to the number of data points of clusters in each class also be different. Traditional algorithmsas Support Vector Machine (SVM), Twin Support Vector Machine (TSVM), or Least Square Twin Support VectorMachine (LSTSVM) cannot sufficiently exploit information about the number of data points in each cluster of the data.Which may be effect to the accuracy of classification problems. In this paper, we propose a new Improvement LeastSquare - Support Vector Machine (called ILS-SVM) for binary classification problems with a class-vs-clusters strategy.Experimental results show that the ILS-SVM training time is faster than that of TSVM, and the ILS-SVM accuracy isbetter than LSTSVM and TSVM in most cases.


Author(s):  
Nguyen The Cuong

In binary classification problems, two classes normally have different tendencies. More complex, the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) don't sufficiently exploit structural information with cluster granularity of the data, cause of restricts the capability of simulation of data trends. Structural twin support vector machine (S-TWSVM) sufficiently exploits structural information with cluster granularity of one class for learning a represented hyperplane of that class. This makes S-TWSVM's data simulation capabilities better than TWSVM. However, for the data type that each class consists of clusters of different trends, the capability of simulation of S-TWSVM is restricted. In this paper, we propose a new Hierarchical Multi Twin Support Vector Machine (called HM-TWSVM) for classification problem with each cluster-vs-class strategy. HM-TWSVM overcomes the limitations of S-TWSVM. Experiment results show that HM-TWSVM could describe the tendency of each cluster.


Sign in / Sign up

Export Citation Format

Share Document