Stereo Reconstruction Based on Local Edge Detection and Binocular Stereo Matching

Author(s):  
Fu He ◽  
Feipeng Da
2021 ◽  
Vol 10 (4) ◽  
pp. 234
Author(s):  
Jing Ding ◽  
Zhigang Yan ◽  
Xuchen We

To obtain effective indoor moving target localization, a reliable and stable moving target localization method based on binocular stereo vision is proposed in this paper. A moving target recognition extraction algorithm, which integrates displacement pyramid Horn–Schunck (HS) optical flow, Delaunay triangulation and Otsu threshold segmentation, is presented to separate a moving target from a complex background, called the Otsu Delaunay HS (O-DHS) method. Additionally, a stereo matching algorithm based on deep matching and stereo vision is presented to obtain dense stereo matching points pairs, called stereo deep matching (S-DM). The stereo matching point pairs of the moving target were extracted with the moving target area and stereo deep matching point pairs, then the three dimensional coordinates of the points in the moving target area were reconstructed according to the principle of binocular vision’s parallel structure. Finally, the moving target was located by the centroid method. The experimental results showed that this method can better resist image noise and repeated texture, can effectively detect and separate moving targets, and can match stereo image points in repeated textured areas more accurately and stability. This method can effectively improve the effectiveness, accuracy and robustness of three-dimensional moving target coordinates.


2013 ◽  
Vol 670 ◽  
pp. 202-207 ◽  
Author(s):  
Jun Ting Cheng ◽  
C. Zhao ◽  
W.L. Zhao ◽  
W.H. Wu

In the development of a three-dimensional measurement system, binocular stereo matching is the most important and difficult. In the basis of introducing selective principles of matching algorithm, a new stereo matching algorithm for binocular vision is put forward that is named noncoded difference measuring distance. The algorithm effectively grapples with the problem of searching for the coincidence relation of raster and can efficiently and accurately obtain three-dimensional world coordinates of the entities. Experiment results show that this 3D measuring machine can effectively measure the 3D solid profile of free surface. During the evaluation test for accuracy, scan a standard plane. Fit all 3D points in one plane, and then the flatness value of this plane is obtained. The flatness value of the standard plane has been ultimately measured as: ± 0.0462mm, this measuring accuracy can completely satisfy the requirements of rapid prototyping or CNC machining, it as well as achieves the stated accuracy (± 0.05mm).


Sign in / Sign up

Export Citation Format

Share Document