A Hybrid Integrator-Gain Based Low-Pass Filter for Nonlinear Motion Control

Author(s):  
S.J.A.M. Van den Eijnden ◽  
Y. Knops ◽  
M.F. Heertjes
2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

2016 ◽  
Vol 15 (12) ◽  
pp. 2579-2586
Author(s):  
Adina Racasan ◽  
Calin Munteanu ◽  
Vasile Topa ◽  
Claudia Pacurar ◽  
Claudia Hebedean

Author(s):  
Nanan Chomnak ◽  
Siradanai Srisamranrungrueang ◽  
Natapong Wongprommoon
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4305
Author(s):  
Takamasa Terada ◽  
Masahiro Toyoura ◽  
Takahide Sato ◽  
Xiaoyang Mao

In this work, we propose a fabric electrode with a special structure that can play the role of a noise reduction filter. Fabric electrodes made of the conductive fabric have been used for long-term ECG measurements because of their flexibility and non-invasiveness; however, due to the large impedance between the skin and the fabric electrodes, noise is easily introduced into the ECG signal. In contrast to conventional work, in which chip-type passive elements are glued to the electrode to reduce noise, the proposed electrode can obtain a noise-reduced ECG by changing the structure of fabric. Specifically, the proposed electrode was folded multiple times to form a capacitor with a capacitance of about 3 nF. It is combined with the skin-electrode impedance to form a low-pass filter. In the experiment, we made a prototype of the electrodes and measured ECG at rest and during EMG-induced exercise. As a result, the SNR values at rest and during exercise were improved about 12.02 and 10.29 , respectively, compared with the fabric electrode without special structure. In conclusion, we have shown that changing the fabric electrode structure effectively removes noise in ECG measurement.


Sign in / Sign up

Export Citation Format

Share Document