Robust control of decomposable LPV systems under time-invariant and time-varying interconnection topologies (Part 1)

Author(s):  
A. Eichler ◽  
C. Hoffmann ◽  
H. Werner
2012 ◽  
Vol 461 ◽  
pp. 763-767
Author(s):  
Li Fu Wang ◽  
Zhi Kong ◽  
Xin Gang Wang ◽  
Zhao Xia Wu

In this paper, following the state-feedback stabilization for time-varying systems proposed by Wolovich, a controller is designed for the overhead cranes with a linearized parameter-varying model. The resulting closed-loop system is equivalent, via a Lyapunov transformation, to a stable time-invariant system of assigned eigenvalues. The simulation results show the validity of this method.


1997 ◽  
Vol 21 ◽  
pp. S125-S130 ◽  
Author(s):  
Jeremy G. VanAntwerp ◽  
Richard D. Braatz ◽  
Nikolaos V. Sahinidis

Author(s):  
S. Kalender ◽  
H. Flashner

An approach for robust control of periodically time-varying systems is proposed. The approach combines the point-mapping formulation and a parameterization of the control vector to formulate an equivalent time-invariant discrete-time representation of the system. The discrete-time representation of the dynamic system allows for the application of known sampled-data control design methodologies. A perturbed, discrete-time dynamic model is formulated and plant parametric uncertainty are obtained using a truncated point-mapping algorithm. The error bounds due to point-mapping approximation are computed and a robustness analysis problem of the system due to parametric uncertainties is formulated using structured singular value theory. The proposed approach is illustrated by two design examples. Simulation studies show good performance robustness of the control system to parameter perturbations and system nonlinearities.


Sign in / Sign up

Export Citation Format

Share Document