A Context-Aware Resource Recommendation System for Business Collaboration

Author(s):  
Ke Ning ◽  
Ruinan Gong ◽  
Stefan Decker ◽  
Yuliu Chen ◽  
David O'sullivan
2013 ◽  
Vol 479-480 ◽  
pp. 1213-1217
Author(s):  
Mu Yen Chen ◽  
Ming Ni Wu ◽  
Hsien En Lin

This study integrates the concept of context-awareness with association algorithms and social media to establish the Context-aware and Social Recommendation System (CASRS). The Simple RSSI Indoor Localization Module (SRILM) locates the user position; integrating SRILM with Apriori Recommendation Module (ARM) provides effective recommended product information. The Social Media Recommendation Module (SMRM) connects to users social relations, so that the effectiveness for users to gain product information is greatly enhanced. This study develops the system based on actual context.


Author(s):  
Maryam Jallouli ◽  
Sonia Lajmi ◽  
Ikram Amous

In the last decade, social-based recommender systems have become the best way to resolve a user's cold start problem. In fact, it enriches the user's model by adding additional information provided from his social network. Most of those approaches are based on a collaborative filtering and compute similarities between the users. The authors' preliminary objective in this work is to propose an innovative context aware metric between users (called contextual influencer user). These new similarities are called C-COS, C-PCC and C-MSD, where C refers to the category. The contextual influencer user model is integrated into a social based recommendation system. The category of the items is considered as the most pertinent context element. The authors' proposal is implemented and tested within the food dataset. The experimentation proved that the contextual influencer user measure achieves 0.873, 0.874, and 0.882 in terms of Mean Absolute Error (MAE) corresponding to C-cos, C-pcc and C-msd, respectively. The experimental results showed that their model outperforms several existing methods.


Author(s):  
Constantinos Costa ◽  
Xiaoyu Ge ◽  
Evan McEllhenney ◽  
Evan Kebler ◽  
Panos K. Chrysanthis ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Markus Schedl ◽  
Christine Bauer ◽  
Wolfgang Reisinger ◽  
Dominik Kowald ◽  
Elisabeth Lex

Music preferences are strongly shaped by the cultural and socio-economic background of the listener, which is reflected, to a considerable extent, in country-specific music listening profiles. Previous work has already identified several country-specific differences in the popularity distribution of music artists listened to. In particular, what constitutes the “music mainstream” strongly varies between countries. To complement and extend these results, the article at hand delivers the following major contributions: First, using state-of-the-art unsupervized learning techniques, we identify and thoroughly investigate (1) country profiles of music preferences on the fine-grained level of music tracks (in contrast to earlier work that relied on music preferences on the artist level) and (2) country archetypes that subsume countries sharing similar patterns of listening preferences. Second, we formulate four user models that leverage the user’s country information on music preferences. Among others, we propose a user modeling approach to describe a music listener as a vector of similarities over the identified country clusters or archetypes. Third, we propose a context-aware music recommendation system that leverages implicit user feedback, where context is defined via the four user models. More precisely, it is a multi-layer generative model based on a variational autoencoder, in which contextual features can influence recommendations through a gating mechanism. Fourth, we thoroughly evaluate the proposed recommendation system and user models on a real-world corpus of more than one billion listening records of users around the world (out of which we use 369 million in our experiments) and show its merits vis-à-vis state-of-the-art algorithms that do not exploit this type of context information.


Sign in / Sign up

Export Citation Format

Share Document